请在我们身份验证您的情况下等待...2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。 但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。 例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。 Berger,J。2016年贝叶斯分析学会的2016年奖项获得了这本著名的书,现在是第三版,被广泛认为是贝叶斯方法的主要文本,它因其实用和可访问的方法来分析数据和解决研究问题而受到赞扬。介绍先进的方法,文本具有从真实应用和研究中得出的众多工作示例,强调在本版中使用贝叶斯推断在实践中的实践中使用了四章,这些章节是关于非参数建模的四章,以及关于弱小的先验,避免边界的先验,跨越的先验,交叉竞争和预测信息的宣布,在三个方面使用的学生的最新章节:原则;对于研究生,它提出了贝叶斯建模和计算的有效当前方法;对于研究人员而言,它在应用统计数据中提供了各种贝叶斯方法的其他材料,包括数据集,选定练习的解决方案和软件说明,在书的网页上提供了一些研究人员,强调了在组织科学中使用贝叶斯方法进行数据分析的重要性。但是,在采用贝叶斯方法时,仍然存在一些挑战和局限性。例如,一个问题是贝叶斯方法需要指定先前的分布,这可能很困难,尤其是在使用复杂模型时。Berger,J。一些研究人员提出了各种技术来提出专家判断以告知先前分布的技术。,例如,O'Hagan等。(2006)提供了先前启发的综合指南,包括技术和潜在的陷阱。其他研究的重点是开发使用贝叶斯先验的专家的信念的方法(例如,Johnson等,2010)。此外,还有各种可用的在线资源可以帮助进行贝叶斯分析。例如,Van de Schoot的在线统计培训提供了有关高级统计主题的教程和练习。总的来说,在组织科学中使用贝叶斯方法的使用变得越来越重要,但是它需要仔细考虑先前的分布和启发技术,以确保准确的结果。注意:我已经删除了一些特定的参考,并重点介绍了要点。让我知道您是否希望我保留更多原始文本!van de de Schoot-Hubeek,W.,Hoijtink,H.,Van de Schoot,R.,Zondervan-Zwijnenburg,M。&Lek,K。评估专家判断引发程序,以相关性和应用于贝叶斯分析。客观的贝叶斯分析:对主观贝叶斯分析的案例,批评和个人观点。Brown,L。D.经验贝叶斯和贝叶斯方法的现场测试,用于击球平均赛季预测。Candel,M。J.,Winkens,B。Monte Carlo研究在纵向设计中多级分析中的经验贝叶斯估计值的性能。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。Ibrahim,J。G.,Chen,M。H.,Gwon,Y。darnieder,W。F.贝叶斯方法依赖数据依赖的先验。&Chen,F。权力先验:具有统计功率计算的理论和应用。Muthen,B。,Asparouhov,T。贝叶斯结构方程建模:使用数据依赖性先验对实体理论的更灵活的表示。Rietbergen,C.,Klugkist,I.,Janssen,K。J.,Moons,K。G.&Hoijtink,H。将历史数据纳入随机治疗试验的分析中,以及基于系统文献搜索和专家精力提示的知识的贝叶斯PTSD-Traigntory分析。van der Linden,W。J.在自适应测试中使用响应时间进行项目选择。Wasserman,L。使用数据依赖性先验对混合模型的渐近推断。请注意,我保留了您的消息的原始语言而不翻译。给定文本:释义此文本:数据(版本V1.0)。Zenodo(2020)。元素Google Scholar Chung,Y.,Gelman,A.,Rabe-Hesketh,S.,Liu,J。&Dorie,V。层次模型中协方差矩阵的点估计值较弱。J.教育。行为。Stat。40,136–157(2015)。Google Scholar Gelman,A.,Jakulin,A.,Pittau,M。G.&Su,Y.-S。 logistic和其他回归模型的弱信息默认分布。ann。应用。Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。 B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。 2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。 am。 Stat。2,1360–1383(2008)。MathScinetMath Google Scholar Gelman,A.,Carlin,J。B.,Stern,H。S.&Rubin,D。B. Bayesian数据分析卷。2(Chapman&Hallcrc,2004)。Jeffreys,H。概率理论卷。am。Stat。3(Clarendon,1961).Seaman III,J。W.,Seaman Jr,J。W.&Stamey,J。D.指定非信息先验的隐藏危险。66,77–84(2012).MathScinet Google Scholar Gelman,A。层次模型中方差参数的先前分布(Browne和Draper对文章的评论)。贝叶斯肛门。1,515–534(2006).MathScinet Math Google Scholar Lambert,P.C.,Sutton,A。J.,Burton,P.R.,Abrams,K。R.&Jones,D。R.含糊不清?对使用Winbugs在MCMC中使用模糊的先验分布的影响的仿真研究。Stat。Med。24,2401–2428(2005)。MathScinetGoogle Scholar Depaoli,S。在不同程度的类别分离的情况下,GMM中的混合类别恢复:频繁主义者与贝叶斯的估计。Psychol。方法18,186–219(2013)。Google Scholar DePaoli,S。&Van de Schoot,R。贝叶斯统计中的透明度和复制:WAMBS-CHECKLIST。Psychol。方法22,240(2017)。本文提供了有关如何在使用贝叶斯统计数据估算模型时如何检查各个点的分步指南。统计建模模型检查中的贝叶斯模型检查和鲁棒性是一种用于评估统计模型准确性的方法。它涉及使用各种诊断工具来检查模型的潜在问题,例如偏见或过度拟合。贝叶斯模型检查是传统模型检查的扩展,将先前的信念纳入分析中。再次。贝叶斯模型检查的关键应用之一是检测先前数据冲突。贝叶斯模型检查近年来变得越来越重要,因为它能够提供对统计模型的更细微理解的能力。它允许研究人员量化数据中包含的信息量,并评估其结论的可靠性。一些研究人员为贝叶斯模型检查技术的发展做出了重大贡献,包括Nott等,Evans和Moshonov,Young and Pettit,Kass和Raftery,Bousquet,Veen和Stoel,以及Nott等。这些研究人员介绍了各种诊断工具和评估先前数据协议和冲突的标准。这会发生在同一数据集的先前信念和数据之间存在差异时。像埃文斯(Evans),莫索诺夫(Moshonov)和杨(Young)这样的研究人员已经开发了使用诸如后验预测分布等指标来量化这一冲突的方法。贝叶斯模型检查也已应用于贝叶斯模型中的可能性推断。像Gelman,Simpson和Betancourt这样的研究人员强调了理解表达先前信念的上下文的重要性。除了其方法论上的意义外,贝叶斯模型检查还在社会科学,医学和金融等领域还采用了实际应用。它可以通过确定统计模型的潜在问题来帮助研究人员和政策制定者做出更明智的决定。在此处给定文章,此处28,319–339(2013).MathScinet Math Google Scholar Rubin,D。B. Bayesian具有合理的频率计算,适用于应用的统计学家。ann。Stat。J.am。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。 Stat。 合作。 85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。12,1151–1172(1984)。Mathscinet Math Google Scholar Gelfand,A。E.&Smith,A。F. M.基于采样的方法来计算边际密度。Stat。合作。85,398–409(1990)。 这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。 ifna(1991)。 3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。 4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。 ieee trans。 模式肛门。 马赫。 Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。85,398–409(1990)。这篇开创性的文章将MCMC视为贝叶斯推理的实际方法。ifna(1991)。3(Eds van de Schoot,R。&Miocevic,M。)30–49(Routledge,2020)。4(eds van de Schoot,R。&Miocevic,M。)50–70(Routledge,2020)。Robert,C。&Casella,G。Monte Carlo统计方法(Springer Science&Business Media,2013)。ieee trans。模式肛门。马赫。Intell。 6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。 J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。Intell。6,721–741(1984)。大型Google Scholar Metropolis,N.,Rosenbluth,A。W.,Rosenbluth,M。N.,Teller,A。H.&Teller,E。快速计算机通过快速计算机计算的方程。J. Chem。 物理。 21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。 Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J. &Roweth,D。Hybrid Monte Carlo。 物理。 Lett。 J. am。 Stat。 合作。J. Chem。物理。21,1087–1092(1953).ADS数学Google Scholar Hastings,W。K. Monte Carlo采样方法使用Markov链及其应用。Biometrika 57,97–109(1970).Mathscinet Math Google Scholar Duane,S.,Kennedy,A。D.,Pendleton,B。J.&Roweth,D。Hybrid Monte Carlo。物理。Lett。 J. am。 Stat。 合作。Lett。J.am。Stat。合作。b 195,216–222(1987)。&Wong,W。H.通过数据增强计算后验分布。82,528–540(1987)。 本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。 本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。 元建模,因果推理和社会科学(2017)。Gelman,A。 &Rubin,D。B. 使用多个序列从迭代模拟中推断。 Stat。 SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.82,528–540(1987)。本文解释了当直接计算感兴趣参数的后验密度时,如何使用数据扩展。马尔可夫链蒙特卡洛手册(CRC,2011年)。本书对MCMC及其在许多不同的应用中的使用进行了全面评论。Gelman,A。Burn-in MCMC,为什么我们更喜欢“热身”一词。元建模,因果推理和社会科学(2017)。Gelman,A。&Rubin,D。B.使用多个序列从迭代模拟中推断。Stat。SCI。 7,457–511(1992)。 一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.SCI。7,457–511(1992)。一般方法用于监测迭代模拟的收敛性。 J. Comput。 图。 Stat。 7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。 马尔可夫链蒙特卡洛在实践中57,45-58(1996)。 (2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。 他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。 (2017)。 关键参考包括Minka(2013),Hoffman等。 (2015),Liang等。 Q.一般方法用于监测迭代模拟的收敛性。J. Comput。图。Stat。7,434–455(1998)。大型Google Scholar Roberts,G。O. Markov链链概念与采样算法有关。马尔可夫链蒙特卡洛在实践中57,45-58(1996)。(2020)提出了一种改进的\(\ hat {r} \)度量,用于评估马尔可夫链蒙特卡洛(MCMC)方法的收敛性。他们建立在Bürkner(2017),Merkle和Rosseel(2015)和Carpenter等人的先前作品上。(2017)。关键参考包括Minka(2013),Hoffman等。(2015),Liang等。 Q.(2015),Liang等。Q.Q.新方法利用排序差异,折叠和本地化技术来增强\(\ hat {r} \)的准确性。此外,本综述强调了贝叶斯建模中变异推理方法的重要性,尤其是随机变体,这些变体是大型数据集或复杂模型的流行近似贝叶斯推理方法的基础。(2013),Kingma和BA(2014),Li等。 (2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2013),Kingma和BA(2014),Li等。(2008),Forte等。 (2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。 (2014)。 用于回归分析中的稀疏信号。 该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。 该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。 其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。 L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J. &Friston,K。J. Neuroimage(2005)。 咨询。 临床。(2008),Forte等。(2018),Mitchell和Beauchamp(1988),George和McCulloch(1993),Ishwaran和Rao(2005),Bottolo和Richardson(2010),Ročková和George(2014),Park和Park和Casella(2008),以及Carvalho等。(2014)。用于回归分析中的稀疏信号。该框架利用连续的收缩先验来实现全局稀疏性,同时控制每个系数的正则化量。该方法已广泛应用于各个领域,包括贝叶斯惩罚回归和多元变量选择。其他相关研究包括为高斯状态空间模型的随机模型规范搜索,在结构化添加回归模型中进行功能选择的尖峰和刻录式先验以及多个高斯图形模型的贝叶斯推断。L. F. B., Reich, B. J., Fuentes, M. & Dominici, F. Spatial variable selection methods for investigating acute health effects of fine particulate matter components are explored in the context of Biometrics (2015).MathSciNet MATH Google Scholar Additionally, research on Bayesian fMRI time series analysis with spatial priors is presented by Penny, W. D., Trujillo-Barreto, N. J.&Friston,K。J. Neuroimage(2005)。咨询。临床。Google Scholar Smith,M.,Pütz,B。,Auer,D。&Fahrmeir,L。Neuroimage(2003)中还讨论了通过空间贝叶斯变量选择评估大脑活动。Google Scholar此外,检查了Zhang,L。,Guindani,M.,Versace,F。&Vannucci,M。Neuroimage(2014)的时空非参数贝叶斯变量选择模型用于聚类相关时间课程。判断中信息处理的研究采用了各种方法,如Bolt等人的研究中所见,他们探讨了两种戒烟剂在联合使用的有效性,理由是J.Psychol。80,54–65,2012)。在类似的脉中,Billari等。基于贝叶斯范式内的专家评估(人口统计学51,1933–1954,2014)开发了随机人群预测模型。其他研究已经深入研究了暂时的生活变化及其对离婚时间的影响(Fallesen&Breen,人口统计学53,1377-1398,2016)。同时,Hansford等人。分析了美国律师将军在最高法院的政策领域的位置(Pres。螺柱。49,855–869,2019)。此外,研究重点是使用健康行为综合模型来预测限制“自由糖”消耗(Phipps等人,食欲150,104668,2020)。此外,研究还将贝叶斯统计数据引入了健康心理学,并强调了其在该领域的潜在好处(Depaoli等人,Health Psychol。修订版11,248–264,2017)。Psychol。Gen. 142,573–603,2013; Lee,M。D.,J。 数学。Gen. 142,573–603,2013; Lee,M。D.,J。数学。贝叶斯估计的应用已显示在各种情况下取代传统的t检验,包括认知建模和生态研究(Kruschke,J。Exp。Psychol。55,1-7,2011)。此外,层次结构的贝叶斯模型已在生态学中用于建模种群动态和推断环境参数(Royle&Dorazio,生态学的分层建模和推断)。通过包括Gimenez等人在内的各种研究人员的工作进一步开发了这种方法。(在标记人群中建模的人口统计过程中,3)和King等。(贝叶斯分析人群生态学)。研究还研究了贝叶斯方法在生态学中的使用,例如使用汉密尔顿蒙特卡洛(Monnahan等人,方法ECOL。Evol。8,339–348,2017)。贝叶斯对生态学的重要性的重要性已被埃里森(Elison)等研究人员(ecol。Lett。 7,509–520,2004)。 最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。 也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。 Soc。 系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。Lett。7,509–520,2004)。最后,已经探索了通过设计启发将专家意见整合到贝叶斯统计模型中,突出了其为先验知识提供信息并提高模型准确性的潜力(Choy等,生态学90,265-277,2009)。也已经讨论了有关使用贝叶斯评估诊断人群下降的诊断人群下降的方法(King等,J。R. Stat。Soc。系列C 57,609–632,2008)。 在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。 - Dennis等。 -McClintock等。系列C 57,609–632,2008)。在2008年至2020年的一系列出版物中介绍了统计生态技术的全面综述。- Dennis等。-McClintock等。总而言之,对判断中信息处理的研究以及贝叶斯统计在各个领域的应用,使人们对这些概念及其对决策和人口建模的影响有了更深入的了解。这些作品涵盖了种群建模的各个方面,包括贝叶斯估计,综合人群模型和遗传关联研究。关键论文包括: - King and Brooks(2008)关于贝叶斯对具有异质性和模型不确定性的封闭种群的估计。(2006)使用生态数据估计密度依赖性,过程噪声和观察误差。(2012)基于多阶段随机步行开发了一个一般的离散时间框架,用于动物运动。-Aeberhard等。(2018)对渔业科学的州空间模型进行了综述。其他值得注意的贡献包括: - Isaac等。(2020)讨论了大规模物种分布模型的数据集成。-McClintock等。(2020)提出了一种使用隐藏的马尔可夫模型来发现生态状态动力学的方法。- King(2014)审查了统计生态及其应用。- Andrieu等。(2010)引入了粒子马尔可夫链蒙特卡洛方法,用于复杂的种群建模。这些研究表明,从人口生存能力分析到遗传关联研究,在理解生态系统中采用的统计技术的多样性,强调了该领域数据整合和高级建模方法的重要性。提出一种利用转移学习以提高数据质量的方法。基因组学,统计和机器学习的交集在理解复杂的生物系统中变得越来越重要。最近的研究探索了多摩智数据集的整合,以发现对人类健康和疾病的新见解。由Argelaguet等人建立了整合多派数据集的框架,该框架采用贝叶斯方法来识别生物学过程的关键因素。该方法已应用于包括单细胞转录组学在内的各个领域,如Yau和Campbell的工作所示,他们使用贝叶斯统计学习来分析大型数据集。研究的另一个领域涉及在英国生物库中对跨树木结构的常规医疗数据进行遗传关联的分析。诸如Stuart和Satija的研究表明,将单细胞分析与基因组学相结合以揭示有关复杂生物系统的新信息的潜力。深层生成模型的发展也促进了单细胞转录组学的进步,如Lopez等人的工作所证明的那样,后者应用了深层生成模型来分析大型数据集。此外,与Wang等人一起,对单细胞转录组学中数据降解和转移学习的研究已显示出令人鼓舞的结果。最近的研究还强调了科学研究中可重复性和公平原则(可访问,可互操作和可重复使用)的重要性。这包括诸如癌症基因组图集和Dryad&Zenodo之类的举措,旨在促进开放研究实践。提出了功能性变分贝叶斯神经网络。机器学习技术(包括变异自动编码器)的应用也在理解复杂的生物系统方面变得越来越重要。正如Paszke等人的评论中所述,变化自动编码器为将基因组学和统计数据与深层生成模型的整合提供了有希望的方法。总体而言,多摩智数据集,机器学习技术和统计分析的进步的整合已经开辟了新的途径,以理解复杂的生物系统并揭示了对人类健康和疾病的新见解。概率建模的最新进展导致了几种将深度学习与贝叶斯推论相结合的技术的发展。该领域的一个关键概念是变异自动编码器(VAE),它通过将其映射到较低维度的空间中来了解输入数据的概率分布。Hinton等人引入的Beta-Vae框架将VAE限制为学习基本的视觉概念。研究人员还探索了贝叶斯方法在神经网络中的应用,例如高斯过程和周期性随机梯度MCMC。例如,尼尔在神经网络上的贝叶斯学习方面的工作突出了神经网络与高斯过程之间的联系。此外,已证明将深层合奏用于预测不确定性估计在各种任务中都是有效的。最近的预印象提出了新的新技术,包括功能变分贝叶斯神经网络和细心的神经过程。后者使用注意机制从输入数据中学习相关特征。res。另一项研究的重点是开发更可扩展和可解释的模型,例如标准化流量和周期性随机梯度MCMC。该领域在理解深度学习的理论基础上,包括神经网络与高斯过程之间的联系,也看到了重大进展。Mackay和Williams的作品为贝叶斯倒退网络提供了一个实用的框架,而Sun等人。总的来说,这些进步有助于我们理解概率建模及其在深度学习中的应用。Hoffman,M。D.&Gelman,A。 No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。 J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。Hoffman,M。D.&Gelman,A。No-U-Turn采样器:在汉密尔顿蒙特卡洛(Monte Carlo)的自适应设置路径长度。J. Mach。 学习。 15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. Mach。学习。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。 Stat。 Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。 J. am。 Stat。 合作。 93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。 &Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。 J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。15,1593–1623(2014)。MathScinetMath Google Scholar Liang,F。&Wong,W。H. Evolutionary Monte Carlo:CP模型采样和更改点问题的应用。Stat。Sinica 317-342(2000).liu,J。S.&Chen,R。动态系统的顺序蒙特卡洛方法。J.am。Stat。合作。93,1032–1044(1998).MathScinet Math Google Scholar Sisson,S.,Fan,Y。&Beaumont,M。近似贝叶斯计算手册(Chapman and Hall/CRC 2018)。J. R. Stat。 Soc。 系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。 Stat。 计算。J. R. Stat。Soc。系列B 71,319–392(2009).MathScinet Math Google Scholar Lunn,D。J.,Thomas,A。,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Google Scholar Ntzoufras,I。使用Winbugs Vol。698(Wiley,2011).Lunn,D。J.,Thomas,A.,Best,N。&Spiegelhalter,D。Winbugs - 贝叶斯建模框架:概念,结构和可扩展性。Stat。计算。10,325–337(2000)。Spiegelhalter,D.,Thomas,A。,Best,N。&Lunn,D。OpenBugs用户手册版本3.2.3。OpenBugs(2014).Plummer,M。Jags:使用Gibbs采样的贝叶斯图形模型分析程序。proc。第三国际统计计算的国际研讨会124,1-10(2003)。Google Scholar Plummer,M。Rjags:使用MCMC的贝叶斯图形模型。r软件包版本,4(6)(2016).Salvatier,J.,Wiecki,T。V.&Fonnesbeck,C。使用Pymc3在Python中进行概率编程。peerj Comput。SCI。 2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。SCI。2,E55(2016)。 Google Scholar de Valpine,P。等。 与模型的编程:编写敏捷的通用模型结构的统计算法。 J. Comput。 图。2,E55(2016)。Google Scholar de Valpine,P。等。与模型的编程:编写敏捷的通用模型结构的统计算法。J. Comput。图。Stat.s 26, 403–413 (2017).MathSciNet Google Scholar Bayesian analysis software JASP version 0.14 available for computer use (2020) Lindgren F & Rue H used R-INLA for Bayesian spatial modeling in a Stats journal article (2015) Vanhatalo et al's GPstuff allowed Bayesian Gaussian process modeling with Machine Learning Res articles (2013) Blaxter gave research methods in他的2010年McGraw-Hill教育书《如何进行研究》 BetanCourt在Github上创建了一个原则上的贝叶斯工作流程,主张最佳实践(2020)Veen&Schoot使用了对英超联赛数据的后验预测检查,并在OSF(2020年)上发布了它,并在Kramer&Bosman(2020)Kramer&Bosman在Kramer&Bosman在Kramersship Sumpership Summerschool inter Smixship Summershood prosentie in Utrech Torne in utrecht in of to inty介绍(2019年),UTRECHINE(2019年)(2019年)(2019年)(2019年)(2019年)(2019年)(2019年) Acta Math匈牙利文章(1955)Lesaffre&Lawson在2012年Wiley Publication撰写了一种新的公理概率理论(1955年),Hoijtink等人使用了贝叶斯评估,用于认知诊断评估,发表在Psych Methods In In In Psych Methods Journal(2014)
宏基因组学是对直接从土壤,水和肠道含量等环境样品中提取的遗传物质的研究,而无需隔离单个生物。该领域使用宏基因组学框来根据相似性将DNA序列分为组。目标是将这些序列分配给其相应的微生物或分类群,从而更深入地了解样本中的微生物多样性和功能。计算方法(例如序列相似性,组成和其他特征)用于分组。宏基因组学的方法包括:基于序列组成的binning,它分析了不同基因组中的不同模式;基于覆盖范围的binning,它使用测序深度将分组读取为垃圾箱;混合式分子,结合了两种方法以提高准确性;基于聚类的封装,可用于高基因组多样性数据集;和基于机器学习的封装,需要带注释的参考基因组进行培训。每种方法都有其优势和局限性,其选择取决于特定的元基因组数据集和研究问题。宏基因组学箱很复杂。2017年,本教程将涵盖元基因组式融合工具,以及咖啡发酵生态系统和metabat 2算法metabat的数据生成MAGS,可以轻松地与下游分析和工具集成,例如分类学注释和功能预测。已经对六个样本进行了测序,生成了6个用于咖啡发酵系统的原始数据集。2。宏基因组套件是分析复杂的微生物群落的关键步骤,但面临着几个挑战,包括水平基因转移污染危险嵌合序列和Maxbin Metabat mycc mycc mycc groopm groopm metawrap anvi'o semibin of de nove bin bin bin bin bin bin bin bin bin bin bin的物种计算工具中的物种计算工具中的应变变化,例如已显示出高度准确的有效扩展和用户友好的基准研究发现,Metabat 2在准确性和计算效率方面都优于其他替代方案,以提供有关宏基因组学软件的更多信息,请参见Sczyrba等。使用Illumina MiSeq全基因组测序进行了六次颞枪i弹枪元基因组研究,以全面分析咖啡微生物组的结构和功能。我们基于这些现实世界数据为本教程创建了模拟数据集。我们将介绍本教程中的以下主题:准备分析历史记录和数据,将metabat 2运行到bin元基因组测序数据。要运行binning,我们首先需要将数据纳入Galaxy,任何分析都应具有自己独特的历史记录。让我们通过单击历史记录面板的顶部创建一个新的历史记录并重命名它。要将序列读取数据上传到星系中,您可以直接从计算机导入它,也可以使用这些链接从Zenodo或数据库中获取它:等等。首先,创建一个名为GTN的文件夹 - 带有主题名称和教程名称的子文件夹的材料。选择所需的文件要从顶部附近的下拉菜单中导入。3。通过在弹出窗口中选择“选择历史记录”,选择要导入数据(或创建新数据)的历史记录。通过重命名示例名称的读取对创建配对集合,然后按照以下步骤:检查所有要包含的数据集,并通过单击“数据集对构建列表”来构建数据集对列表。将未配对的前进和反向读取文本更改为每对的常见选择器。单击“配对这些数据集”以进行有效的前进和反向对。输入一个集合名称,然后单击“创建列表”以构建集合。binning有几个挑战,包括高复杂性,碎片序列,不均匀的覆盖率,不完整或部分基因组,水平基因转移,嵌合序列,应变变异和开放图像1:binning。在本教程中,我们将通过Galaxy使用Metabat 2(Kang等,2019)来学习如何键入元基因组。metabat是“基于丰度和四核苷酸频率的元基因组binning的工具”,该工具将shot弹枪元基因组序列组装到微生物群落中。它使用基因组丰度和四核苷酸频率的经验概率距离来达到98%的精度,并在应变水平下以281个接近完全独特的基因组为准。我们将使用上传的汇编FastA文件作为Metabat的输入,为简单起见保留默认参数。设置为“否”。在输出选项中,“垃圾箱的最小尺寸作为输出”设置为200000。对于ERR2231567样品,有6个箱子,将167个序列分类为第二箱。手:1。4。该工具将在Galaxy版本1.2.9+Galaxy0中使用这些参数:“包含重叠群的Fasta文件”汇编FASTA文件; “考虑融合的良好重叠群的百分比”设置为95; “ binning边缘的最低分数”为60; “每个节点的最大边数”为200; “构建TNF图的TNF概率截止”为0;和“关闭丢失还是小重叠的额外的押金?”The output files generated by MetaBAT 2 include (some are optional and not produced unless required): - Final set of genome bins in FASTA format (.fa) - Summary file with info on each genome bin, including length, completeness, contamination, and taxonomy classification (.txt) - File with mapping results showing contig assignment to a genome bin (.bam) - File containing abundance estimation of each genome bin (.txt) - 每个基因组bin(.txt)的覆盖曲线的文件 - 每个基因组bin的核苷酸组成(.txt) - 文件具有每个基因组bin(.faa)的预测基因序列(.faa)的基因序列,可以进一步分析和用于下游应用,例如功能性注释,相比的植物组合和化学分析,并可以用于下游应用。去复制是识别基因组列表中“相同”的基因组集的过程,并从每个冗余集中删除除“最佳”基因组之外的所有基因组。在重要概念中讨论了相似性阈值以及如何确定最佳基因组。基因组去复制的常见用途是元基因组数据的单个组装,尤其是当从多个样本中组装简短读数时(“共同组装”)。这可能会导致由于组合类似菌株而导致碎片组件。执行共同组装以捕获低丰度微生物。另一种选择是分别组装每个样品,然后去重新复制箱以创建最终的基因组集。metabat 2不会明确执行放松,而是通过利用读取覆盖范围,样品差异覆盖范围和序列组成来提高构架准确性。DREP等工具的设计用于宏基因组学中的复制,旨在保留一组代表性的基因组,以改善下游分析。评估:DREP评估集群中每个基因组的质量,考虑到完整性,污染和应变异质性等因素。基因组选择:在每个群集中,DREP根据用户定义的标准选择代表性基因组。该代表性基因组被认为是群集的“翻译”版本。放松输出:输出包括有关消除基因组的信息,包括身份,完整性和污染。用户可以选择基因组相似性的阈值,以控制删除水平。使用您喜欢的汇编程序分别组装每个样本。bin每个组件分别使用您喜欢的Binner。bin使用您喜欢的Binner共同组装。5。将所有组件中的垃圾箱拉在一起,然后在它们上运行DREP。6。在解复的基因组列表上执行下游分析。检查质量:1。一旦完成,必须检查其质量。2。可以使用CheckM(Parks等,2015)评估binning结果,这是一种用于元基因组学框的软件工具。3。2。检查通过将基因组仓与通用单拷贝标记基因进行比较,评估了基因组仓的完整性和污染。宏基因组学:1。宏基因组学将DNA碎片从混合群落分离为单个垃圾箱,每个垃圾箱代表一个独特的基因组。checkm估计每个基因组箱的完整性(存在的通用单拷贝标记基因集的总数)和污染(在一个以上bin中发现的标记基因的百分比)。关键功能:1。基因组完整性的估计:CheckM使用通用单拷贝标记基因来估计回收基因组的比例。2。基因组污染的估计:CHECKM估计多个箱中存在的标记基因的百分比,表明来自多种生物的潜在DNA。3。识别潜在的杂料:CheckM基于基因组的标记基因分布来识别杂种。4。结果的可视化:CheckM生成图和表,以可视化基因组垃圾箱的完整性,污染和质量指标,从而使解释更加容易。checkm也可以根据与不同分类学组相关的特定标记基因(例如sineage_wf:评估使用谱系特异性标记集对基因组垃圾箱的完整性和污染)进行分类分类的基因组分类。checkm lineage_wf工作流使用标记基因和分类信息的参考数据库来对不同分类学水平的基因组垃圾箱进行分类。来源:-Turaev,D。,&Rattei,T。(2016)。(2014)。使用metabat 2的元基因组重叠群构造教程强调了选择最合适的binning工具的重要性。不同的方法具有不同的优势和局限性,具体取决于所分析的数据类型。通过比较多种封装技术,研究人员可以提高基因组融合的精度和准确性。可用于元基因组数据,包括基于参考的,基于聚类的混合方法和机器学习。每种方法都有其优点和缺点,从而根据研究问题和数据特征使选择过程至关重要。比较多种封装方法的结果有助于确定特定研究的最准确和最可靠的方法。在完整性,污染和应变异质性方面评估所得垃圾箱的质量至关重要。另外,比较已识别基因组的组成和功能谱可以提供有价值的见解。通过仔细选择和比较binning方法,研究人员可以提高基因组箱的质量和可靠性。这最终导致对微生物群落在各种环境中的功能和生态作用有了更好的了解。微生物群落系统生物学的高清晰度:宏基因组学以基因组为中心和应变分辨。- Quince,C.,Walker,A。W.,Simpson,J。T.,Loman,N。J.,&Segata,N。(2017)。shot弹枪宏基因组学,从采样到分析。-Wang,J。和Jia,H。(2016)。元基因组范围的关联研究:微生物组细化。-Kingma,D。P.和Welling,M。(2014年)。自动编码变分贝叶斯。-Nielsen,H。B.等。鉴定和组装基因组和复杂元基因组样品中的遗传因素,而无需使用参考基因组。-Teeling,H.,Meyerdierks,A.,Bauer,M.,Amann,R。,&Glöckner,F。O.(2004)。将四核苷酸频率应用于基因组片段的分配。-Alneberg,J。等。(2014)。通过覆盖范围和组成的结合元基因组重叠群。-Albertsen,M。等。(2013)。通过多个元基因组的差异覆盖层获得的稀有,未培养细菌的基因组序列。-Kang,D.D.,Froula,J.,Egan,R。,&Wang,Z。(2015)。metabat,一种有效的工具,用于准确地重建来自复杂微生物群落的单个基因组。simmons b a和singer s w提出了一种新算法,称为Maxbin 2.0,用于2016年生物信息学期刊中多个元基因组数据集的binning基因组。此外,Kang等人开发了Metabat 2,一种自适应binning算法,该算法于2019年在Peerj发表。PlazaOñate等人引入了MSPMiner,这是一种从shot弹枪元基因组数据重建微生物泛元组的工具,如2019年的生物信息学报道。Other studies like those of Lin and Liao, Chatterji et al, Parks et al, Pasolli et al, Almeida et al, Brooks et al, Sczyrba et al, Qin et al, Bowers et al, Sieber et al, Cleary et al, Huttenhower et al, Saeed et al, and Pride et al have also contributed to the development of metagenomics tools and approaches for genome recovery.这些发现表明,宏基因组分析和计算方法的最新进展使研究人员能够从环境样本中恢复几乎完整的基因组。本文讨论了有关宏基因组学的各种研究,这是对特定环境中多种生物的遗传物质的研究。研究集中于人类肠道微生物组及其在不同人群和年龄之间的组成。引用了几篇论文,其中包括Chen等人的论文。(2020),他开发了一种从宏基因组获得准确而完整的基因组的方法。Daubin等人的另一篇论文。(2003)探讨了细菌基因组中侧向转移基因的来源。本文还提到了有关人肠道微生物组的研究,包括Schloissnig等人的工作。(2013),他绘制了人类肠道微生物组的基因组变异景观。Yatsunenko等。 (2012)研究了在不同年龄和地理位置的人类肠道微生物组。 此外,本文参考了有关微生物从母亲传播到婴儿的研究,包括Asnicar等人的工作。 (2017)和Ferretti等。 (2018)。 本文还涉及宏基因组学分析中使用的机器学习和深度学习技术,例如变化自动编码器和无监督的聚类方法。 最后,本文提到了用于分析元基因组数据的软件工具,包括Li(2013)的BWA-MEM和Paszke等人的Pytorch。 (2019)。 以下是生物信息学和基因组学领域的各种研究文章的摘要。Yatsunenko等。(2012)研究了在不同年龄和地理位置的人类肠道微生物组。此外,本文参考了有关微生物从母亲传播到婴儿的研究,包括Asnicar等人的工作。(2017)和Ferretti等。(2018)。本文还涉及宏基因组学分析中使用的机器学习和深度学习技术,例如变化自动编码器和无监督的聚类方法。最后,本文提到了用于分析元基因组数据的软件工具,包括Li(2013)的BWA-MEM和Paszke等人的Pytorch。(2019)。以下是生物信息学和基因组学领域的各种研究文章的摘要。释义旨在保留原始文章的主要思想和发现,同时以更简洁和易于访问的方式介绍它们。1。**聚类**:一种用于将相似数据点分组在一起的算法,应用于基于Web的数据。2。** art **:用于下一代测序的模拟器可以模仿现实世界数据。3。** metaspades **:一种可以从混合微生物群落中重建基因组的宏基因组组装子。4。** minimap2 **:一种以高精度和速度对齐核苷酸序列的工具。5。** blat **:用于比较基因组序列的爆炸样比对工具。6。** Circos **:用于比较基因组学的可视化工具,用于显示多个基因组之间的关系。7。**高通量ANI分析**:使用平均核苷酸同一性(ANI)指标估算原核基因组之间距离的方法。8。** checkm **:一种评估微生物基因组完整性和污染的工具。9。** BLAST+**:具有改进功能和用户界面的BLAST算法的更新版本。10。** mash **:使用Minhash估算基因组或元基因组距离的工具。11。**浪子**:原核基因组的基因识别和翻译起始位点识别工具。12。** InterPro 2019 **:蛋白质序列注释的InterPro数据库的更新,具有改进的覆盖范围和访问功能。13。14。15。16。**控制虚假发现率**:一种用于管理生物信息学研究中多种假设检验的统计方法。** checkv **:一种用于评估元基因组组装的病毒基因组质量的工具。**使用深度学习从宏基因组数据中识别病毒**:使用机器学习从混合微生物群落中检测病毒的研究。**标准化的细菌分类法**:基于基因组系统发育的细菌进行分类的新框架,该细菌修改了生命之树。17。** gtdb-tk **:一种用于与基因组分类学数据库(GTDB)分类的工具包。18。** iq-Tree **:使用快速有效算法估算最大可能的系统发育的工具。这些摘要概述了生物信息学和基因组学领域的各种研究文章,突出显示了与序列比对,组装,注释和系统发育有关的工具,方法和研究。最新的多个序列对齐软件的进步显着提高了D. M. Mafft版本7,Modelfinder,Astral-III,UFBOOT2,Life V4和APE 5.0等工具的性能和可用性。这些工具通过引入新颖特征,例如快速模型选择,多项式时间种树重建,超快的自举近似和交互式可视化来提高系统发育估计值的准确性。这些软件包的整合已简化了构建进化树的过程,使研究人员可以更轻松地探索复杂的系统发育关系。