私人客户指数 (“PCI”) 基于历史信息,过往表现并不代表未来表现。PCI 是使用复杂计算得出的,结果仅供参考,不一定能表明其是否适合您的特定投资或其他要求。ARC 不保证任何投资或投资组合的表现,也不保证投资者资本的回报或任何特定的回报率。ARC 对根据本报告所含信息做出的任何投资决策不承担任何责任。在与任何 PCI 数据贡献者签订协议之前,您应始终完成自己的分析和/或寻求适当的专业建议。内容是 ARC 或其许可人的财产,受版权和其他知识产权法的保护。本文信息的使用受 www.suggestus.com 上详述的严格使用条件的约束。
本文研究了多个气候模型误差之间的互相关。我们构建了一个贝叶斯分层模型,该模型解释了各个模型的空间依赖性以及跨不同气候模型的跨构成。我们的方法允许具有不可分割的和非稳定的交叉协方差结构。我们还提出了一种协方差近似方法,以促进非常大的多元空间数据集建模和分析中的计算。协方差近似组成的两个部分:一个减少的秩部分以捕获大规模的空间依赖性,以及稀疏的协方差矩阵,以纠正由降低级别近似所引起的小规模依赖误差。我们特别注意近似值的第二部分具有块对基结构。模型拟合和预测的仿真结果表明,在预测过程近似和独立块分析中,提出的近似值的取代。然后,我们将综合方法应用于多个气候模型错误的联合统计建模。
Confidential©2021 Presentation on "One Sun One World One Grid : Energy Integration in South Asia "/Rajiv Ratna Panda/Associate Director/SARI-EI-IRADE/Clean Energy Ministerial Regional and Global Energy Interconnection (RGEI) initiative/AtlanticCouncil.org/4th March,2021, 4.30 PM IST ISTS-Inter-State Transmission
田径和军事生活。我们已经对冗余要求,不清楚的标准以及我们统治我们学员日常生活的系统的应用变得不平衡。每个支柱测试(并扩大)学员能力的局限性,因此他们准备满足生活的需求。挑战我们的学员在同时在这三个领域中尽力而为,这使VMI在其发展和教育体系中与众不同。尽管军事和运动组件是VMI体验不可或缺的一部分,但VMI是一个高等教育的机构,必须将时间资源适当地应用于学者。学员和教职员工都表示有必要花费足够的时间来学习,同时还要投资于他们正常课程以外的学术机会。
*本报告中的“医疗供应链”指参与医疗产品旅程的所有利益相关者,包括制药和医疗器械制造商、分销商、解决方案提供商、医疗保健提供商(如医院、诊所)、开发合作伙伴和患者。
自 2019 年以来,数字赋权基金会 (DEF) 一直通过研讨会、报告和编辑书籍探索人工智能的社会、政治、经济和文化影响,特别是在中央政府的国家人工智能战略 (#AIforAll) 之后,该战略旨在推动人工智能在医疗、农业、教育和基础设施等领域的发展。DEF 认识到,信息和通信技术的进步不仅影响白领工人,还影响农村和服务不足的社区,而这些社区在发展政策中往往被忽视。DEF 的“公正人工智能 - 社区数据和算法”计划侧重于建立社会正义与技术之间的联系,重点关注数据对社区日益增长的影响。该计划采用人工智能造福社会的方法,旨在探索人工智能在印度农村和近郊地区的社会影响方面的研究空白,研究人工智能对金融、教育和服务领域的边缘化社区的影响,并增强年轻人对人工智能用途和局限性的理解。它还寻求建立关于人工智能问责制的政策对话,制定多方利益相关者方法来解决人工智能中的排斥、偏见和不透明问题,并在加强草根初创企业的同时指导人工智能解决方案以造福社会。此外,DEF 致力于通过人工智能、算法系统和数据保护知识为 SoochnaPreneurs、社区和社区驱动的创新生态系统提供支持,同时开发以公民为中心的数字设计和模型,以便在印度有意义地采用人工智能。
Schottky接触是半导体和金属之间关键的界面,在纳米 - 症状导向器件中变得越来越重要。shottky屏障,也称为能量障碍,可以控制跨金属 - 高症导体界面的耗竭宽度和载体运输。控制或调整Schottky屏障高度(SBH)一直是任何半导体设备成功运营中的至关重要问题。本综述提供了SBH静态和动态调整方法的全面概述,特别关注纳米半导体设备的最新进步。这些方法涵盖了金属,界面间隙状态,表面修饰,较低图像的效果,外部电场,光照明和压电效应的工作函数。我们还讨论了克服界面间隙状态引起的费米级固定效应的策略,包括范德华触点和1D边缘金属触点。最后,这篇评论以这一领域的未来观点结束。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。保留所有权利。
对于(1.1)的所有解决方案u(t),其中ω⊂r是可测量的子集。不等式(1.2)衡量schr odinger方程解决方案的解决方案如何在域的子集上汇总。这样的特性与高频波传播现象以及Schr odinger operator的准膜的浓度特性有关。结果对不同的潜在mani-和相应的schr odinger操作员很敏感。估计可观察性估计值(1.2)的另一个动机是证明相关控制系统的确切可控性。有关精确语句,请参见推论1.4。在一般框架中,有三个参数会影响Schr'odinger类型方程的可观察性估计值。这些是基础几何形状(构成方程式的背景流形和相关的schr odinger操作员),控制区域ω以及时间t> 0实现可观察性。当可观察性在任何时间t> 0时都保持时,控制成本,即最佳常数C(T,V,ω)的爆炸率也是研究的对象。在本说明中,我们在可测量的控制区域设置的无界设置上解决了1D schr odinger方程的可观察性问题。据我们所知,这种设置在文献中的研究要少得多。陈述主要结果,我们回想起控制区域的厚度条件。
erahertz(THz)辐射是电磁光谱的区域,频率在0.1至10 THz之间。1-3微型THZ源和检测器启用了各种应用,例如通信,监视筛查,材料分析,生物医学诊断和个人医疗保健跟踪。1,2,4,5 5物联网(IoT)应用的小型独立传感器的可穿戴电子设备和网络的出现正在推动低功率电子电路和设备或芯片水平上的能源收获中的研究。微型THZ功率探测器可能会成为可以充当能量收集设备的关键组件,尤其是在可透明的薄膜底物上,它们可以克服硅(SI)电子芯片的外形限制,并可以在可扩展的滚动过程中制造。因此,他们有可能无需电池或外部电源提供分散的传感器网络,被动读数电路或集成的移动设备。6