2023年,我们实现新能源汽车年交付量144,155辆,较2022年同比增长29.7%。自2019年首款新能源汽车上市以来至报告期末,交付量年复合增长率为243.4%。2023年,C系列车型共交付105,701辆,占全年总交付量的73.3%以上,而2022年该比例为44.3%,表明产品结构不断改善。其中C11车型2023年全年交付80,708辆,较2022年同比增长81.9%。2023年连续实现20万辆、30万辆量产车交付,是公司跨越式发展的重要里程碑和新起点,巩固了公司行业新生力量的领先地位。
• 经过八年技术积累,我们全套自研技术实现了从LEAP1.0到LEAP3.0架构的升级迭代,并于2024年1月10日正式发布。LEAP3.0技术架构融合了多项行业首创的领先技术,包括行业首个四域合一的集中式集成电子电气(E/E)架构(“四叶草架构”)、行业首个用一颗8295芯片实现高级驾驶辅助系统(ADAS)、智能座舱、驾驶及泊车功能的集成技术、行业首个脱离导航的城市全场景NAC技术、行业首个无缝OTA升级技术、行业首个新能源黄金动力总成技术(CTC电池+油冷电驱),整车架构通用性指数达88%,为行业最高。
Cheraghian 等人 [ 21 – 23 ] 在零样本 3 维模型分类方 面提出了 3 维点云的零样本学习方法、缓解 3 维零样 本学习中枢纽点问题的方法和基于直推式零样本学 习的 3 维点云分类方法,并将它们封装进一个全新 的零样本 3 维点云方法 [ 24 ] 中。以上方法均是利用已 知类样本的点云表征及其词向量对未知类别进行分 类,开创了零样本 3 维模型分类方法。近年来, CLIP 在零样本图像分类上取得了良好的效果,因此有研 究者将 CLIP 应用到零样本 3 维模型分类方法中, Zhang 等人 [ 25 ] 提出了基于 CLIP 的 3 维点云理解 (Point cloud understanding by CLIP, PointCLIP) 模型, PointCLIP 首先将 3 维点云投影成多个深度图,然 后利用 CLIP 的预训练图像编码器提取深度图特 征,同时将类别名称通过 CLIP 预先训练的文本编 码器提取文本特征。但是 PointCLIP 的性能受到深 度图和图像之间的域差异以及深度分布的多样性限 制。为了解决这一问题,基于图像 - 深度图预训练 CLIP 的点云分类方法 (transfer CLIP to Point cloud classification with image-depth pre-training, CLIP2Point) [ 26 ] 将跨模态学习与模态内学习相结合 训练了一个深度图编码器。在分类时,冻结 CLIP 的图像编码器,使用深度图编码器提取深度图特 征,该方法缓解了深度图和图像间的模型差异。用 于 3 维理解的图像 - 文本 - 点云一致性表征学习方法 (learning Unified representation of Language, Im- age and Point cloud for 3D understanding, ULIP) [ 27 ] 构建了一个图像、文本和点云 3 种模态的 统一嵌入空间,该方法利用大规模图像 - 文本对预 训练的视觉语言模型,并将 3 维点云编码器的特征 空间与预先对齐的视觉 - 文本特征空间对齐,大幅 提高了 3 维模型的识别能力。与之相似的是,基于 提示文本微调的 3 维识别方法 (CLIP Goes 3D, CG3D) [ 28 ] 同样使用 3 元组形式确保同一类别的 3 维模 型特征和图像特征之间以及 3 维模型特征和文本特 征之间存在相似性,从而使点云编码器获得零样本 识别的能力。另外, PointCLIP V2 [ 29 ] 在 Point- CLIP 的基础之上,通过利用更先进的投影算法和 更详细的 3 维模型描述,显着提高了零样本 3 维模型 分类准确率。本文采用语义增强 CLIP 解决图像和文 本的语义鸿沟问题,通过在语义层面为图像和文本 提供更多相似的语义信息,使图像和文本对齐更具有 一致性,从而有效提高 3 维模型的零样本分类性能。 2.2 提示工程
零能源建设电力 - 热热双层能量优化控制方法Kong Lingguo 1,Wang Shibo 1,Cai Guowei 1,Liu Chuang 1,Guo Xiaoqiang 2
摘要 - 客户身份和访问管理(CIAM)系统在确保企业基础架构方面起关键作用。但是,实施这些系统的复杂性需要仔细的建筑计划,以确保积极的投资回报(ROI)并避免昂贵的延误。主动持续的网络威胁的扩散,再加上AI,云计算和地理分布的客户群体中的进步,因此需要向自适应和零信任安全框架进行范式转变。本文介绍了c的杂音h yper-exterensible e xtremely-sed z ero-trust(chez)ciam-pam体系结构,该体系结构专为大型企业而设计。CHEZ PL CIAM-PAM框架通过整合联合身份管理(私人和公共身份),无密码身份验证,自适应多因素身份验证(MFA),基于微服务的PEP(基于策略奖励点),多层RBAC RBAC(基于角色的访问控制)和多层级别的系统。这种未来的设计设计还包括端到端数据加密,以及与最新的基于AI的威胁检测系统的无缝集成,同时确保遵守严格的监管标准。
NSUC1610 是通过反电动势的大小来进行堵转检测,在马达相位未通电期间,可以检测到 BEMF 电压。但这 不包括全步进模式,因为两个相位始终通电。以下假设在微步进模式下检测失速,BEMF 电压与电机转速成 正比,这样可以判断电机是否运行。由于只有在一相未通电的情况下才能进行测量,因此对 BEMF 电压的观 察非常有限。对于理想的电机,在没有任何负载和损耗的情况下,转子将随着定子磁场持续旋转,并且在相电 流为零时,可以看到 BEMF 电压的峰值。对于实际电机和外加负载,转子将始终滞后于定子磁场。此负载相关 相位滞后将导致固定测量点处 BEMF 电压的负载相关变化。在零相位滞后的情况下,可以测量 BEMF 电压峰 值,并且只能看到反电势与速度的相关性。在与负载变化的情况下,反电势会产生相位滞后,BEMF 电压将从 峰值将出现偏移,当这个电压大于或者小于一个阈值时,这就标志着检测到失步点,电机运动将停止。BEMF 电压测量仅在零电流阶跃期间启用。在零电流阶跃结束时,采样和测量最后一次 BEMF 电压值。这可确保线 圈电流达到零,且 BEMF 电压实际可见。根据电机参数、速度和阶跃模式,零阶跃可能会变短,并且无法获得 明显的 BEMF 电压。此时则无法检测失速。失速检测仅在匀速运动期间进行,在加速或减速期间,BEMF 电压 可能非常低,则不会启用失速检测。具体电流波形如图 2.5 所示:
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
Promicon项目旨在了解微生物组功能,以引导其表型生产生物聚合物,能量载体,原料和抗菌剂。它专注于使用高级数据挖掘,建模和机器学习分析关键物种和整个微生物。Promicon整合了合成生物学和代谢工程,以优化微生物群落以有效的代谢产物生产。该项目建立了一个标准化平台,用于定量单细胞和OMIC数据分析。其结果与欧盟的生物经济战略相吻合,促进了可持续的生物产品和循环经济。
摘要 - 物联网促进了一个联系,聪明和可持续的社会;因此,必须保护物联网生态系统。基于IoT的5G和6G将利用机器学习和人工智能(ML/AI)的使用来为自动和协作的安全IoT网络铺平道路。零触摸,零信任的IoT安全性,具有AI和机器学习(ML)启用框架,提供了一种强大的方法来确保物联网(IoT)设备的扩展景观。本文介绍了一个基于零信任,零触摸和AI/ML的集成的新颖框架,该框架可用于检测,缓解和预防现代物联网生态系统中DDOS攻击。将重点放在新的集成框架上,通过为所有物联网流量,固定和移动5G/6G物联网网络流量以及数据安全性(隔离零触摸和动态政策执行)建立零信任。我们通过基于基于准确性,精度,回忆,F1-Score和Roc-auc进行比较,对五个机器学习模型,即X Gboost,Random Forest,K-Nearest Neight,随机梯度下降和Na've Bayes进行了比较分析。结果表明,检测和缓解不同DDOS向量的最佳性能来自基于整体的方法。通过合并网络切片,微分段,连续身份验证和弹性的5G/6G策略,该框架为基于基于勒索的DDOS攻击提供了强大的可扩展安全性。零触摸,具有AI/ML启用的零值得物联网安全性是基于5G/6G的物联网和工业互联网4.0和5.0时代的强大网络安全策略的范式。通过整合这些技术,组织可以有效地保护其物联网环境,保护敏感数据并在面对不断发展的网络威胁时保持业务连续性