答:激光荧光投影仪通常简称为“激光投影仪”,但激光投影仪还有另一种平台,通常称为 RGB 激光,其处理光线的方式截然不同,但都为最终用户提供了多种好处。激光荧光是一种固态无灯投影照明平台,与基于灯的投影技术相比,其使用寿命更长。1DLP® 技术 1DLP® 投影仪使用蓝色激光二极管作为主要光源,以产生三原色 - 红、蓝、绿 - 激光二极管发出的蓝光照射到涂有荧光化合物的旋转轮上,发出黄光。使用二向色滤光片分离黄光以产生红光和绿光,而蓝光成分则直接穿过荧光轮的透明扩散段。红、绿、蓝三色传递到 DLP® 芯片的成像表面,然后 DLP® 芯片将光线通过镜头发送到投影屏幕上。 3LCD 技术 3LCD 投影仪使用白色激光二极管作为主要光源,使用二向色滤光片分离每种颜色来产生三原色,然后使单独的红、绿和蓝光穿过三个透射式 LCD 成像面板,之后光重新组合以通过镜头在投影表面上创建图像。
自 1993 年 Shuji Nakamura 制成第一只 GaN 基蓝光发光二极管 (LED) 以来 [1],基于 III 族氮化物材料的 LED 发展迅速并得到了广泛的应用。然而,导致绿光 LED 效率低下的“绿光隙”一直未能得到解决,而蓝光和红光 LED 却实现了较高的发光效率 [2,3]。造成上述问题的原因之一是 InxGa1-xN/GaN 多量子阱 (MQW) 中铟组分的增加,而这是为了使 InGaN 基 LED 能够发出更长的波长的光。由于 InGaN 与 GaN 之间的晶格常数和热膨胀系数不匹配 [4,5],以及 InN 在 GaN 中的低混溶性 [6],高铟组分 InGaN QW 的绿光 LED 会遭受晶体质量劣化。同时,还会产生大量的位错,它们充当非辐射复合中心[7],对发光是不利的。另一方面,有源区产生的光很难从高折射率半导体(n GaN = 2.5)逸出到空气中(n air = 1)。内部光的临界角(θ c )或逸出锥仅为~23.6°[θ c = sin −1(n air /n GaN )],超过此角度发射的光子会发生全内反射,因此只有一小部分光可以逸出到周围的空气中[8]。绿光是三原色之一,提高绿光LED的发光效率是实现高效率、高亮度RGB(红、绿、蓝)LED的关键。
电视、智能手机和平板电脑等新兴设备正成为人们日常生活的一部分。2012 年,国际电信联盟无线电通信部门 (ITU-R) 为超高清显示器推荐了一种新的色域标准,称为 BT.2020(或 Rec.2020)。[1] 采用 Rec.2020 色域可以精细地再现自然界中的几乎所有颜色,这些颜色基于红、绿、蓝 (RGB) 三原色,国际照明委员会 (CIE) 色度坐标分别为 (0.708, 0.292)、(0.170, 0.797) 和 (0.131, 0.046)。在这种需求的驱动下,开发能够显示具有极窄发射光谱带宽和高效率的单色 RGB 颜色的新型发光材料和装置是一项至关重要的挑战。有机发光二极管 (OLED) 因其广泛的研究和开发目前被视为 UHD 显示器的主流技术。[2–8] 在过去的二十年里,随着新发光机制的出现,OLED 的效率得到了显著提高,特别是磷光 [5,8,9](第二代)和热激活延迟荧光 [7,10,11](TADF,第三代),这些机制使电子到光子转换的内部量子效率达到 ≈ 100%。尽管电致发光 (EL) 效率如此之高,但大多数传统 OLED 都存在宽带发射光谱的问题,半峰全宽 (FWHM) 通常为 > 50 nm 或更宽,从而导致 EL 的色纯度低。因此,在商用 OLED 显示器中,需要使用额外的彩色滤光片来选择性地透射原色,这不可避免地会导致光提取率下降,并导致器件的外部 EL 量子效率 (EQE) 降低。从器件的功耗角度来看,这种情况也是不利的。最近,以稠合多环 π 体系为特征的多共振诱导 TADF (MR-TADF) [12–24] 材料已成为克服传统 OLED 缺点的有机发射体的新范例,引发了研究兴趣的激增。事实上,与最先进的无机 LED 和量子点 LED 的情况一样,采用有机硼 MR-TADF 发射体的 OLED 已经实现了高效的窄带 EL