非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,激光和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的特殊共振,这极大地增强了光 - 互动,导致SHG增强量约550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。
非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,启动和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的光学共振,这极大地增强了轻度相互作用,导致SHG增强功能约为550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。
近年来,外尔半金属(WSM)在固态研究中引起了广泛关注。它们的独特性质是由电子能带结构中导带和价带的单个接触点决定的,该结构具有线性电子色散。[1,2] 在这种所谓的外尔锥中,电子表现为无质量的准相对论费米子,并由狄拉克方程的相应解外尔方程描述。[3] 这些外尔节点总是以相反手性的成对出现,在动量空间中分开并由拓扑保护的表面态(费米弧)连接。 [4,5] 这种特殊的电子结构产生了许多材料特性,例如高电子迁移率、[6,7] 低温超导性、[8–10] 巨大的磁阻、[11,12] 强烈的异常霍尔效应、[7,11,13] 以及 Adler–Bell–Jackiw 异常。[14–17]
摘要:本文将新兴的混合型有源三次谐波电流注入变换器(H3C)应用于电池储能系统(BESS),形成一种新型的H3C-BESS结构。与常用的两级VSC-BESS相比,所提出的H3C-BESS能够减少无源元件和开关损耗。分析了H3C-BESS的工作原理,推导了其数学模型。针对系统的不同运行模式,提出了闭环控制策略和控制器设计,包括电池电流/电压控制和注入谐波电流控制。特别是,通过电网电流控制实现有源阻尼控制,无需无源阻尼电阻即可抑制LC滤波器谐振。仿真结果表明,所提出的拓扑结构及其控制策略具有快速的动态响应,建立时间小于4 ms。此外,电池电流和电网电流的总谐波畸变率分别仅为2.54%和3.15%。注入谐波电流的幅值仅为电网电流的一半,表明电流注入电路的损耗很小。实验结果验证了所提方案的有效性。
微谐振器中的非线性高谐波产生是一种通用技术,用于扩展可见区域中自我引用系统和相干通信等应用程序的操作范围。但是,产生的高谐波排放会随温度变化而发生共振转移。我们对热行为引起的相位不匹配进行了全面研究,该研究表明,可以通过线性和非线性热启动效应来补偿这种共振转移。使用此模型,我们预测并实验证明了可见的第三次谐波模式,当在L波段泵送时,温度依赖性波长偏移在-2.84 pm/ºC和2.35 pm/ºC之间。除了提供一种实现Athermal操作的新方法外,这还允许人们测量可见模式的热系数和Q因子。通过稳态分析,我们还确定了稳定的Athermal第三次谐波产生的存在,并实验证明了正交泵送的可见第三次谐波模式,温度依赖性波长偏移在12ºC的温度范围内为0.05 pm/ºC。我们的发现有望在计量,生物学和化学传感应用中为潜在的2 F –3 F自我引用,可为高效且精确的可见发射效率,可配置和活跃的温度依赖温度偏移补偿方案。