摘要:本文详细介绍了符合半F47-0706标准的Ultimod和XGEN电源范围。简介一般而言,由于设备和过程控制的敏感性,工厂自动化设备需要非常高的电源质量。尤其是半导体处理设备可能容易受到输入线上的电压下垂。半F47-0706标准定义了半导体处理,计量和自动化测试设备的最低电压SAG免疫要求。作为本设备的组件,需要电源来满足这些最小电压SAG要求。什么是电压下垂?电压下垂(或倾斜)定义为RMS电压的降低或电流低于标称的90%的标称持续时间,直到一分钟为一分钟,但不完全中断。电压下垂可能有许多原因,例如恶劣的天气条件,公用事业设备操作或故障以及相邻的客户。我们中的许多人都会看到电压下垂的影响(例如,白炽灯的瞬间变暗),但是在生产环境中,输入电压下垂可能导致生产关闭,从而导致巨大的收入损失。为了解决此问题,1999年,半导体设备和材料研究所(SEMI)建立了与AC线SAG免疫有关的标准。
基于可再生能源的发展分布生成,以提高功率质量。依赖于天气和气候变化的风和太阳能发电机等可再生能源的可变性质对微网格的功率质量产生了影响。功率质量评估涉及许多指标;包括电压质量,电压不平衡,SAG得分和当前得分(当前THD)。良好的功率质量评估减少了电力系统中的能源损失,从而降低了高利润率。在这项研究中;描述了使用新型磷虾优化(NKHO)技术在混合微电网中进行的电压质量评估。在电压评估中使用NKHO进行混合微电网提供了优化微电网的控制和操作的强大而有效的方法,从而确保其可靠性并最大程度地减少其对网格的影响。所提出的技术可以识别敏感的总线和能量存储系统的最佳尺寸,以减轻电压下垂的影响。这项研究评估了在微电磁电压调控中的分数阶订单比例,积分和衍生物(FOPID)控制器的应用。使用MATLAB/SIMULINK环境开发了所提出的杂种微电网。
摘要 本文提出了一种增强型三层预测分级电源管理框架,以实现孤岛微电网的安全经济运行。保证微电网经济运行的三级控制建立在基于半定规划的交流最优潮流模型之上,该模型定期向二级控制发送功率参考。为减轻可再生能源发电和负荷带来的不确定性,提出并实施了一种集中式线性模型预测控制 (MPC) 控制器用于二级控制。MPC 控制器可以通过密切跟踪来自三级控制器的参考信号来有效地调节微电网系统频率,并且计算复杂度较低。实施基于下垂的初级控制器来与次级 MPC 控制器协调,以实时平衡系统。微电网电源管理框架中模拟了同步发电机 (SG) 和太阳能光伏 (PV)。提出了一种统一线性输入状态估计器 (ULISE),用于 SG 状态变量估计和由于网络物理系统组件受损等而导致的控制异常检测。仿真结果表明,可以准确估计 SG 状态,同时可以有效检测控制信号的不一致性,以实现增强型 MPC。此外,与传统的比例积分 (PI) 控制相比,所提出的分层电源管理方案表现出卓越的频率调节能力,同时保持较低的系统运行成本。
摘要 — 微电网 (MG) 是一种自主电力系统,可以独立运行或连接到电网。通常的做法是使用单一电网组织来改善能源获取并确保电力的稳定供应。由于微电网 (MG) 缺乏主电网的高摩擦力,并且容易受到较大的电压和频率波动的影响,因此如果处于孤岛状态,微电网 (MG) 可能会不稳定。标准、方向以及可访问性和互操作性标准都涉及微电网的可靠性、分布式本地资源的使用以及网络安全。这项工作提出了一种革命性的智能控制器 Adaptive。本研究提出了一种新型智能控制器,即自适应网络模糊推理系统 - 下垂控制器 (ANFISDC),通过下垂系数修改,提供最佳功率共享,同时最大限度地减少功率过载/削减。为了为孤岛微电网提供必要的稳定性和有利可图的功率共享,下垂系数被改变以考虑 RES(可再生能源)组件的功率波动以及电力生产和需求之间的关系。此外,二次控制用于恢复下垂控制引起的频率/电压下降。在 MATLAB/Simulink 中对负载波动的模拟表明,所提出的策略提高了基于下垂的可再生能源供电微电网的稳定性和经济可行性。模拟结果表明,所建议的 ANFISDC 方法在保持微电网稳定和盈利运行方面效果良好。
聚乳酸 (PLA) 是 3D 打印工艺中常用的材料。在材料挤出 (MEX) 技术中,最终的 3D 打印部件具有较低的机械性能。本研究的目的是研究经过退火的 3D 打印 PLA 样品的拉伸强度。考虑的变量是退火温度和退火时间,有三个温度水平:70 ℃ 、90 ℃ 和 110 ℃ ,以及两个退火时间:60 和 90 分钟。冷却速度设定为每小时 10 C,并在炉中冷却 24 小时。结果表明,退火显著影响拉伸强度,与未退火部件相比,退火部件的拉伸强度显著提高。与未经过退火的部件的拉伸强度值相比,退火部件表现出更高的拉伸强度。弹性模量趋于下降,工件尺寸在各个方向上略有收缩。在对患有足下垂的儿童踝足矫形器(AFO)进行退火实验的结果中发现,经过退火处理的踝足矫形器样品在各个方向上均有收缩,变化相对较小。当使用退火工件时,无需补偿工件尺寸。在 110 C 温度下进行 90 分钟的退火时,可获得最高的拉伸强度。与打印样品相比,退火样品的拉伸强度平均提高了 42%。该玻璃化转变温度越高,热值越高,这将影响塑料链的排列和结晶度,并导致其物理性质发生变化。此外,研究结果表明,通过选择理想的工艺参数和后处理条件,可以大大提高热塑性材料的优化拉伸强度。