这种合作的另一个好处是了解人工智能的下游效应。人工智能应用并非孤立存在——它们可以在整个组织中产生连锁反应。Gambhir 举了一个例子:“你可能会想出一个很棒的算法,比如说向用户推荐某些产品。这对用户来说很好,但也许会对业务产生影响。你正在改变正在销售的产品组合,这可能会对内部团队的目标或其他一些你可能甚至不知道的指标产生影响。”通过创建一种协作文化,团队定期分享他们的计划,并主动联系其他团体以确定下游效应,Grab 确保与结果有利益关系的人都得到了咨询。
细菌编码了多种防御噬菌体感染的系统。许多流行的抗噬菌体防御系统有一个共同的主题,即使用专门的核苷酸信号作为第二信使来激活下游效应蛋白并抑制病毒传播。在本文中,我们回顾了控制四大抗噬菌体防御系统家族中核苷酸免疫信号的分子机制:CBASS、Pycsar、Thoeris 和 III 型 CRISPR 免疫。对连接噬菌体检测、核苷酸信号合成和下游效应功能的各个步骤的分析揭示了信号传导的共同核心原理,并揭示了用于增强免疫防御的系统特定策略。我们比较了最近发现的噬菌体用来逃避核苷酸免疫信号的机制,并强调了影响宿主-病毒相互作用的趋同策略。最后,我们解释细菌抗噬菌体防御和真核抗病毒免疫之间的进化联系如何定义支配所有生命界核苷酸免疫的基本规则。
乳腺癌是影响女性健康的最常见疾病之一。近年来对乳腺癌的研究取得了进展,但仍然是一个主要的健康问题。研究表明,翻译起始因子EIF4A3与肿瘤的发生和发育密切相关,但特定机制尚不清楚。在这项研究中,我们旨在探索EIF4A3的特定分子机制,以促进体内和体外乳腺癌的恶性过程。我们的结果表明,在乳腺癌中,EIF4A3的表达显着上调,EIF4A3的过表达可以加速乳腺癌细胞的生长。RIP-SEQ和RIP-RT-QPCR分析表明,EIF4A3可以与CDC5L的mRNA结合并影响其表达。 从catrapid中,我们预测EIF4A3-蛋白可以与Cdc5l-MRNA的5705-5954区域结合Cdc5l。 CDC5L是EIF4A3的下游效应子。 这些结果表明EIF4A3-CDC5L轴促进了乳腺癌细胞的增殖。 这项研究为理解EIF4A3在乳腺癌的恶性过程中的作用提供了理论基础。RIP-SEQ和RIP-RT-QPCR分析表明,EIF4A3可以与CDC5L的mRNA结合并影响其表达。从catrapid中,我们预测EIF4A3-蛋白可以与Cdc5l-MRNA的5705-5954区域结合Cdc5l。CDC5L是EIF4A3的下游效应子。这些结果表明EIF4A3-CDC5L轴促进了乳腺癌细胞的增殖。这项研究为理解EIF4A3在乳腺癌的恶性过程中的作用提供了理论基础。
原核生物与入侵的移动遗传因素之间的进化武器竞赛导致出现了无数的抗病毒防御系统,这些防御系统聚集在宿主基因组中的防御岛上。通过识别与已知防御操纵子2-4相邻的未知基因的簇,原核生物免疫系统的这种内在特征促进了新型防御系统的系统发现。使用这种方法,最近已经确定了许多推定的防御系统,包括BREX 5,DISMAL 6,SEPTU 2,RADAR 3和MOKOSH 4,其蛋白质成分与多种酶活性有关。这些“先天”免疫系统被认为提供了多层的宿主防御,并补充了诸如限制性限制,流产感染和适应性免疫系统等规范防御机制的活动,例如CRISPR-CAS 7,8。对于这些先天系统的一小部分,基于免疫力的分子触发因素和机制已被发现9-16。例如,CBASS系统通过检测高度结构化的噬菌体RNA 17提供免疫力,从而产生环状二核苷酸18,19,随后激活下游效应蛋白以触发感染宿主细胞的死亡18,20。与CBAS,Avast和Caprel SJ46相比,通过识别高度保守的噬菌体蛋白(例如门户,末端酶和主要的capsid蛋白)来激活其下游效应子,以中止噬菌体感染21,22。尽管免疫学角色
背景,意义和假设:结直肠癌(CRC)是美国与癌症相关死亡的第二大原因。(Siegel Rl。等,CA Cancer J Clin。,2024年)约43%的CRC病例涉及KRAS突变,该突变激活RAS/MAPK途径,并且与野生型KRAS相比,它与预后明显较差。(McCall,J。L.等,分子和细胞生物学,2016年)。通过RAF/MEK/ERK支架蛋白的信号传导,KSR1在CRC肿瘤的起始,化学耐药性和上皮 - 间质转变(EMT)中至关重要。对EMT相关转录本翻译的事先分析表明,上皮基质相互作用1(EPSTI1)在CRC细胞中优先以KSR1依赖性方式翻译,并且EPSTI1是必不可少的,并且足以且足以促进N-钙粘蛋白转换,在促进肿瘤细胞迁移和入侵中起关键作用。KSR1驱动TIC形成的机制促进了TICS向DTP的过渡并调节对下游效应子(例如EPSTI1)的转录后控制,尚不清楚。对RAS突变的CRC细胞中KSR1调节的RNA剪接和下游效应子的全面理解可能揭示出治疗性剥削的新脆弱性。我们假设KSR1通过调节RNA结合蛋白来控制RNA剪接,这是驱动CRC中EMT必不可少的机制。KSR1的丧失有望引发RNA轮廓的广泛变化,阐明了先前未识别的调节剂以及替代剪接的途径,燃料结直肠癌发病机理。
摘要:NF-κB(活化B细胞的核因子K-Light-right-chain-Emhancer)转录因子家族对于调节整个身体的免疫促炎反应至关重要。在静息状态下,IκB在细胞质中被IκB隔离。IκB的蛋白酶体降解激活了NF-κB,将其易位转化为核,充当促炎基因上调的核转录因子。启动NF-κB激活的刺激是多种多样的,但在规范上归因于促炎性细胞因子和趋化因子。NF-κB的下游效应是细胞类型特异性的,在大多数情况下,导致炎性级联反应的激活。 作为中枢神经系统的主要免疫反应者,小胶质细胞在激活病理条件后激活后表现出NF-κB的上调。 在这种情况下,与中枢神经系统中其他细胞类型的小胶质串扰可以诱导细胞死亡,从而进一步加剧疾病病理。 在这篇综述中,我们将强调NF-κB在触发小胶质细胞介导的神经炎症中的作用。NF-κB的下游效应是细胞类型特异性的,在大多数情况下,导致炎性级联反应的激活。作为中枢神经系统的主要免疫反应者,小胶质细胞在激活病理条件后激活后表现出NF-κB的上调。在这种情况下,与中枢神经系统中其他细胞类型的小胶质串扰可以诱导细胞死亡,从而进一步加剧疾病病理。在这篇综述中,我们将强调NF-κB在触发小胶质细胞介导的神经炎症中的作用。
GV1001在体外研究中保护神经细胞免受淀粉样蛋白β(Aβ)毒性和其他胁迫源的影响,并证明了中度至重度阿尔茨海默氏病(AD)患者的临床有益作用。在这里,我们研究了GV1001在三重转基因AD(3XTG-AD)小鼠中的保护作用和作用机理。我们发现GV1001改善了中年和老年3XTG-AD小鼠的记忆和认知。此外,它减少了大脑中的β低聚物和磷酸-TAU(SER202和THR205)水平,并通过促进神经保护小胶质细胞和星形胶质细胞表型来减轻神经炎症,同时减少神经毒性。在体外,GV1001与促性腺激素释放的激素受体(GNRHR)具有高亲和力。循环腺苷一磷酸的水平是活化GnRHR的直接下游效应子,在GV1001治疗后增加。 此外,抑制GnRHR会阻断GV1001诱导的效果。 因此,通过抑制神经炎症并通过激活GNRHR及其下游信号通路来抑制神经炎症并降低β低聚物水平和磷酸-TAU,GV1001可以通过抑制神经炎症并降低β低聚物水平和磷酸-TAU来提高3XTG-AD小鼠的认知和记忆功能。循环腺苷一磷酸的水平是活化GnRHR的直接下游效应子,在GV1001治疗后增加。此外,抑制GnRHR会阻断GV1001诱导的效果。因此,通过抑制神经炎症并通过激活GNRHR及其下游信号通路来抑制神经炎症并降低β低聚物水平和磷酸-TAU,GV1001可以通过抑制神经炎症并降低β低聚物水平和磷酸-TAU来提高3XTG-AD小鼠的认知和记忆功能。
摘要 环磷酸腺苷 (cAMP) 是第一个发现的第二信使,在细胞信号转导中起着关键作用,调节许多生理和病理过程。cAMP 可以调节各种靶基因的转录,主要通过蛋白激酶 A (PKA) 及其下游效应物如 cAMP 反应元件结合蛋白 (CREB)。此外,PKA 可以磷酸化许多激酶,如 Raf、GSK3 和 FAK。异常的 cAMP-PKA 信号转导与各种类型的人类肿瘤有关。特别是,cAMP 信号转导可能具有肿瘤抑制和肿瘤促进作用,具体取决于肿瘤类型和环境。cAMP-PKA 信号转导可以调节癌细胞的生长、迁移、侵袭和代谢。本综述重点介绍了 cAMP-PKA-CREB 信号在肿瘤发生中的重要作用。还讨论了针对该途径进行癌症治疗的潜在策略。关键词:cAMP、PKA、CREB、癌症
摘要:KRAS 是人类最常见的致癌基因之一,但生产直接抑制剂的协同努力大多以失败告终,使 KRAS 获得了“无药可用”的称号。最近生产亚型特异性抑制剂的努力取得了更大的成功,几种 KRAS G12C 抑制剂已进入临床试验,包括 adagrasib 和 sotorasib,它们已显示出对患者有效的早期证据。从其他 RAS 通路抑制剂的经验教训表明,这些药物在体内的效果将因耐药性的产生而受到限制,G12C 抑制剂的临床前研究已发现这方面的证据。在这篇综述中,我们讨论了 G12C 抑制剂的当前证据、对 G12C 抑制剂的耐药机制以及克服它们的潜在方法。我们讨论了联合治疗的可能靶点,包括 SHP2、受体酪氨酸激酶、下游效应物和 PD1/PDL1,并回顾了正在进行的针对这些抑制剂的临床试验。