陶瓷复合材料 (CC) 是不同相的混合物,其发展通常被视为技术进步的里程碑。它们几乎用于所有重要行业。CC 经常会受到可变的动态载荷、冲击或高温 [1-3]。本文分析了由 Al2O3/ZrO2 制成的薄板的冲击。这些板材由上述 CC 制成,其成分比例不同。使用近场动力学分析损伤进展,类似于准静态拉伸 [4]。本研究的目的是描述 CC 板中的冲击损伤发展并确定相含量的作用。研究发现,测试的 CC 中的相对比例对板的行为至关重要。总之,可以说所采用的近场动力学方法适合解决所研究的问题,并且应将冲击板视为真实的三维结构。
指定多体量子系统状态所需的参数数量随其成分数量呈指数增长。这一事实使得在计算上难以准确描述动力学并在微观层面上表征状态。在本论文中,我们采用量子场论概念来实验性地表征远离平衡态的旋量玻色气体。首先,我们引入相关概念,这些概念为新兴宏观现象提供有效描述,其公式与超冷原子系统的能力相匹配。在我们的实验研究中,我们在准一维陷阱几何中采用 87 Rb 旋量玻色-爱因斯坦凝聚态。我们通过测量自旋自由度的波动来探索相图作为有效二次塞曼位移的函数,并确定三个不同的相。利用这些知识,我们研究了在分离不同相的量子相变中发生瞬时淬灭后发生的不稳定性。这些不稳定性使我们能够以高度可控的方式将系统驱动到远离平衡状态。在淬火后的很长一段时间内,我们观察到与非热不动点的出现相关的通用动力学。横向自旋角取向的结构因子具有在时间和空间中的重新缩放,具有通用指数以及通用缩放函数。利用实验控制,我们探测了这种现象对初始条件细节的不敏感性。复值横向自旋场的空间分辨快照允许提取单粒子不可约关联函数,这是量子有效作用的基石。我们发现在高度占据状态下出现了低动量的 4 顶点的强烈抑制。引入的概念与提出的实验适用性为研究多体系统在其演化的所有阶段提供了新方法:从初始不稳定性和远离平衡的瞬态现象到最终的热化。