28. J. Amri, T. Souier, B. Malki, B. Baroux, “冷轧不锈钢板最终退火对钝化膜电子性能和抗点蚀能力的影响”,腐蚀科学,50 (2008) 431-435。29. B. Malki, T. Souier, B. Baroux, “合金元素对不锈钢点蚀的影响:一种建模方法”,电化学学会杂志。155 (2008) C583-C587。
测试样品由一个管状标本组成,包括4英寸SCH 40无缝管(114.3mm O.D.x 6.3mm厚)长度为3米,HP/A截面系数为170m。标本均符合一个纵向关节,面向低温喷气 /喷气喷气火灾撞击位置和样品上的两个圆周关节符合测试标准,以促进在最繁重的条件下进行测试。The specimen was protected with “FireMaster Marine Plus Blanket” system (88mm nominal thickness) which comprised of the following construction composition: 38mm thick Morgan FireMaster Marine Plus Blanket (Density: 128 kg/m³) 0.049mm thick VaporStop™ Foil 12/25/12 50mm thick Morgan FireMaster Marine Plus Blanket (Density: 128 kg/m³)0.7毫米厚的316层不锈钢板外覆盖“ Fireemaster Marine Plus毯子”,使用125毫米中心的不锈钢线和“ Firemaster Marine Plus Plus毯子”之间的所有接头都安装在适当的位置。“ Firemaster Marine Plus毯子”的第一层和第二层在圆周和管状截面的相对侧也抵消了300毫米,以减少热传递。由Temati制造的一个“ Firemaster Marine Plus毯子”保护系统纳入了“ Firemaster Marine Plus毯”保护系统中,由Temati制造的0.049mm厚的“ VaporStop™Foil 12/25/12”组成,安装在第一个38mm厚的Morgan Firemaster Marine Plus Marine Plus Planset Planset(密度:128 KG/M M)上。 “ VaporStop™Foil 12/25/12”中的所有接头均由75mm重叠,并用Temati生产的“ VaporStop™Foil 12/25/12/12/12/12”密封。由Temati制造的一个“ Firemaster Marine Plus毯子”保护系统纳入了“ Firemaster Marine Plus毯”保护系统中,由Temati制造的0.049mm厚的“ VaporStop™Foil 12/25/12”组成,安装在第一个38mm厚的Morgan Firemaster Marine Plus Marine Plus Planset Planset(密度:128 KG/M M)上。“ VaporStop™Foil 12/25/12”中的所有接头均由75mm重叠,并用Temati生产的“ VaporStop™Foil 12/25/12/12/12/12”密封。0.7毫米厚的316层不锈钢板外覆层被75mm的纵向和圆周上覆盖,并在重叠的接头中掺入了由Dow Chemical Company Ltd.制造的“ Dowsil™Firestop 700密封剂”的应用。316不锈钢板外壁层被固定在100mm中心的不锈钢铆钉(Ø10mm)的位置,纵向固定在100mm的中心和88mm的中心。0.7毫米厚的316不锈钢板外覆层由不锈钢带(20mm宽)固定在适当的位置,并在200mm中心拧紧固定扣。完整性:60分钟的低温喷气释放暴露“ Firemaster Marine Plus毯子”保护系统在整整持续时间保持了低温喷气释放的时间,没有观察到的固定布置或开口。喷气火势暴露的65分钟“ Firemaster Marine Plus Glanset”保护系统一直存在于低温喷气释放曝光的整个持续时间,没有观察到固定布置或开口。
指导指定传感器激活的卷纸毛巾分配器[凹陷] [半衰减] [表面安装]壁柜。毛巾分配器门面形成,由现代轮廓,半径和制造商设计师系列中的相关配件形成。毛巾分配器容量一:8英寸宽乘8¼英寸的标准纸巾卷,带有传感器激活的毛巾分配机构,带有钥匙到的玻璃杯锁。通用键合。由不锈钢板形成,在裸露的表面上,完全焊接,无缝角和无毛刺边缘:橱柜和法兰0.030英寸 / 22-GA。厚的;门0.036英寸 /20-ga。厚的。毛巾分配器可操作四个D大小碱性电池。
580 x 595 x 820mm 730 x 645 x 870mm 890 x 615 x 1025mm 450 x 450 x 450mm 600 x 500 x 500mm 570 x 465 x 840mm 90 L 150 L 223 L 镀锌钢板上的烘烤丙烯酸涂层 不锈钢板(SUS-304) 玻璃棉 岩棉 强化三层玻璃窗(t = 5mm) – 不锈钢板,不锈钢丝(可调) 2 3 4 顶板上两个(内径 32mm) 顶板上一个(内径 32mm) 强制空气循环系统 微处理器 PID 控制 热电偶 数字设定(可调范围:± 1˚ C) 自动启动,自动停止,斜率控制,3 步程序00:00 ~ 99:59/一步。最大重复 99 次 数字 LED 显示屏 1.1kW 1.2kW 2.5kW 多叶片风扇直径 149mm 涡轮风扇直径 180mm 螺旋桨风扇 107mm 50/60Hz,电线约 2m 约 1.1kW 约 1.2kW 约 2.6kW 40˚ C ~ 200˚ C 40˚ C ~ 300˚ C ±0.5 度 ±2.5 度(200˚ C 时) ±3.0 度(200˚ C 时) 50kg 66kg 97kg 过流断路器、自动设定温度警报(设定点 +10˚ C)、独立过热过流断路器、自我诊断、保护电路、控制部分过热安全系统(65˚ C 时触发)、自我诊断、警报蜂鸣器、内存备份保护热敏电阻、远程控制警报插孔、串行通信。控制部分、远程控制警报插孔、双独立热保护器(电子系统)、内存备份、串行通信。
具有优异防水性/粘附性的超疏水/超亲水表面(SBS/SLS)在学术研究和工业环境中都具有重要意义,因为它们在微小液滴和气泡操控中具有有趣的功能。然而,大多数涉及 SBS/SLS 的操控策略仅限于大面积制造或复杂的形貌设计,这明显阻碍了它们的实际应用。在本文中,我们通过一步飞秒激光烧蚀设计和制造了超亲水不锈钢板下方的超疏水聚二甲基硅氧烷窄化双轨(SNDR)。我们的 SNDR 轨道能够在水下自发地、单向地从宽端向窄端输送不同体积的气泡,即使它们被弯曲也是如此。进一步讨论了不同几何双轨配置在气泡输送性能中的力学分析。最后,我们通过实验证明了在多个 SNDR 组合上以设计的体积比无损混合气泡的惊人能力。该方法简单、灵活,具有广泛的潜在应用,如界面科学和微流体中的智能气泡传输、混合和可控化学反应。
本研究涉及光束-目标相互作用模拟的开发和验证,以确定给定目标几何形状、表面辐射强度和自由流条件的目标温度分布随时间的变化。通过数值和实验研究了湍流超音速流动的影响。实验在弗吉尼亚理工大学超音速风洞中进行,喷嘴速度为 4 马赫,环境总温度,总压力为 1。1 × 10 6 Pa,雷诺数为 5 × 10 7 / m。目标由涂成平黑色的 6.35 毫米不锈钢板组成。用 300 瓦连续光束镱光纤激光器照射目标,产生 4 毫米高斯光束,光束直径为 1.08 微米,距前缘 10 厘米,其中存在 4 毫米湍流边界层。吸收的激光功率为 65、81、101、120 瓦,最大热通量在 1035 至 1910 W/cm2 之间。使用中波红外摄像机测量目标表面和背面温度。还使用八个 K 型热电偶测量背面温度。进行了两次测试,一次是流动,另一次是流动。对于流动情况,隧道启动后开启激光器,流动达到稳定状态。对于流出情况,板以相同功率加热,但没有超音速流动。通过从流出温度中减去流动温度可以看到冷却效果。此温度减法有助于消除偏差误差,从而显着降低整体不确定性。使用 GASP 共轭传热算法模拟 81 和 65 瓦的实验。大多数计算都是使用 Spalart-Allmaras 湍流模型在 280、320 单元网格上进行的。进行了网格收敛研究。与 65 瓦的情况相比,81 瓦的情况显示出更多的不对称性,并且在上游发现了一个冷却增加的区域。通过热电偶和红外温度测量也可以看到背面的不对称性增加。对于流出的情况,计算低估了表面温度 7%。对于 65 瓦和 81 瓦的情况,靠近中心的表面冷却都被低估了。对于所有功率设置,对流冷却都会显著增加达到给定温度所需的时间。