在公共卫生危机期间,人们对疫苗接种的态度会发生怎样的变化?我们报告了在 COVID-19 大流行的六个月内(2020 年 3 月 16 日至 8 月 16 日)对美国居民进行的纵向调查的结果。过去的研究表明,疾病威胁的显著性增加应该会改善人们对疫苗的态度,但与此相反,我们观察到,当 COVID-19 疫苗上市时,人们接种疫苗的意愿有所下降。我们进一步发现,总体疫苗态度和接种流感疫苗的意愿都有所下降。异质性分析表明,这种下降是由自认为是共和党人的参与者推动的,他们对疫苗的态度和意愿呈负面趋势,而民主党人基本保持稳定。与风险感知和行为的研究一致,那些对 COVID-19 疫苗接种态度较差的人也认为该病毒的威胁性较小。我们提供的证据表明,对媒体渠道和社交网络的差异化可以解释自我认同的民主党人和共和党人之间观察到的不对称两极分化。
摘要DNA甲基化对仓鼠腺嘌呤磷酸蛋白酶基转移酶(APRT)和疱疹胸苷激酶(TK)基因的跨遗传活性的影响。通过使用包含这些基因序列的M13构建体,使用限制性片段启动引物第二链合成在体外甲基化的特定段使用底物2'-脱氧-5-甲基-5-甲基 - 胞迪三丁烷三磷酸(DMCTP)。通过DNA-MEDI-ETED共转移将这些杂交甲基化分子插入小鼠LTK细胞中。在所有情况下,整合序列都保留了体外定向的甲基化模式。在5'区域中CpG甲基化抑制了APRT基因,但在3'端或相邻的M13序列中未能通过甲基化来进行。与此相反,在5'启动子区域和TK基因的3'结构区域中的DNA甲基化都具有很强的抑制作用。这表明这种修饰可能会通过不涉及RNA聚体识别序列直接改变的机制影响转录。
在传统(经典)纠错中,Levenshtein 于 1966 年引入的删除纠错 [1] 近来引起了广泛关注(例如,参见 [2] 及其参考文献)。在纠正擦除时,接收方知道擦除的位置 [3]–[5]。与此相反,接收方不知道删除的位置,这给纠正删除和构造适合删除纠错的代码增加了额外的难度。部分由于删除纠错和量子纠错的共同困难,量子删除纠错的研究最近才刚刚开始 [6]–[8]。这些研究提供了量子删除纠错码的具体示例。 [6] 提出了第一个系统地构造1-删除校正二元量子码,其中对任意正整数k,构造了((2 k +2 − 4 , k )) 2 码。最近,[9],[10] 提出了第一个系统地构造t-删除校正二元量子码,适用于任意正整数t。现有研究存在以下问题:(1)没有系统地构造纠正1以上删除的非二元量子码。(2)现有的稳定器量子纠错研究不能以明显的方式重复使用,而置换不变码
摘要 — 通过技术手段进行手臂和手部跟踪可以收集可用于确定手势含义的数据。为此,机器学习算法主要被研究以寻找最高识别率和最短识别时间之间的平衡。然而,这种平衡主要来自于统计模型,而统计模型很难解释。与此相反,我们提出了 µC 1 和 µC 2,两种基于几何模型的手势识别方法,支持识别过程的可视化和几何解释。我们将 µC 1 和 µC 2 与两种经典机器学习算法 k-NN 和 SVM 以及两种最先进的深度学习模型 BiLSTM 和 GRU 进行比较,实验数据集包含意大利手语 (LIS) 的十个手势类别,每个类别由五名没有经验的非母语手语者重复 100 次,并通过可穿戴技术(传感手套和惯性测量单元)收集。最终,我们在高识别率(> 90%)和低识别时间(< 0.1 秒)之间实现了折衷,这足以满足人机交互的需要。此外,我们基于几何代数详细阐述了算法的几何解释,这有助于对识别过程有所理解。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
在本文中,我们试图反驳量子力学 (QM) 基础文献中普遍存在的正统主张,即“叠加态在实验室中从未被真正观察到”。为此,我们首先对著名的测量问题进行批判性分析,我们认为,该问题源于严格应用经验实证主义要求,将量子形式主义纳入他们对“理论”的特定理解。在这种情况下,临时引入投影假设(或测量规则)可以理解为来自朴素经验主义立场的必要要求,该立场假定观察是“常识”经验的不言而喻的给定——独立于形而上学(范畴)预设。然后,我们将注意力转向量子力学的两种“非坍缩”解释——模态解释和多世界解释——尽管它们否认“坍缩”是一个真实的物理过程,但仍然将测量规则作为理论的必要元素。与此相反,根据爱因斯坦的说法“只有理论才能决定什么可以被观察到”,我们建议回归对“物理理论”的现实主义表征理解,其中“观察”被认为源自理论预设。正是从这个角度出发,我们讨论了一种新的非经典概念表征,它使我们能够以直观(anschaulicht)的方式理解量子现象。抛开投影假设,我们讨论测量和观察量子叠加的一般物理条件。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
摘要—在合成孔径雷达 (SAR) 干涉测量中,两个不同传感器位置之间的相位差用于估计地形地貌。虽然可以通过这种方式找到三维 (3-D) 表面表示,但在固定距离和方位角位置的高度方向上不同散射体的分布仍然未知。与此相反,断层扫描技术在高度方向上实现了真正的几何分辨能力,并为许多应用和反演问题带来了新的可能性。即使是由重叠和缩短效应引起的 SAR 图像中的误解也可以通过断层扫描处理来解决。本文首次展示了极化机载 SAR 断层扫描的成功实验实现。我们提出了针对多基线成像几何的断层成像孔径合成概念,并讨论了由有限数量的飞行轨迹引起的限制。我们提出了一种减少与成像位置的不规则和欠采样空间分布相关的高度模糊性的方法。最后,我们解决了极化机载 SAR 层析成像的实验要求,并展示了使用德国航空航天中心的实验 SAR(E-SAR)在德国上法芬霍芬附近试验场的 L 波段获取的多基线数据集的实验结果。
黑洞信息(丢失)悖论是一个有关黑洞蒸发和演化过程的幺正性难题的问题(见霍金[9],或Chakraborty和Lochan[4]、Harlow[8]、Polchinski[16]和Marolf[10]的评论)。幺正性守恒的假设(尤其是我们的假设)意味着几种一般的情况。例如,可以采用这样的假设(我们也这样做),即信息在黑洞蒸发过程中(以某种方式)逐渐释放。然而,这个观点(显然和其他观点一样)需要某种令人信服的物理机制,或者(在缺乏机制的情况下)至少需要某种可行的信息传输抽象算法。研究该悖论的一个显而易见的方法是,从特定的物理机制中抽象出问题,从量子比特的角度分析问题。在文献中,我们可以找到许多量子比特模型,它们或多或少成功地再现了黑洞演化的各个步骤(例如,参见 Broda [ 2 , 3 ]、Giddings [ 6 , 5 ]、Giddings 和 Shi [ 7 ]、Mathur [ 11 , 12 ]、Mathur 和 Plumberg [ 13 ]、Osuga 和 Page [ 14 ] 或 Avery [ 1 ] 的评论)。不幸的是,在所有这些模型中,因果关系这一重要问题似乎都没有引起应有的重视,因此没有明确排除超光速通信的可能性。与此相反,我们目前的处理方式优先考虑因果关系。更准确地说,在我们的方法中,我们严格控制通过量子比特传输的信息的方向。