摘要:作者使用基于碳基于乙基纤维素的可生物降解基质的碳基复合材料探索了基于纸的电子产品的开发,该复合材料基于乙基纤维素和二元酯溶剂。主要重点是用于创建灵活,环保电子设备的屏幕打印技术。这项研究通过考虑各种组合物,包括石墨烯,石墨和碳黑色的各种组成,评估了这些复合材料的流变学测量,电特性,柔韧性和粘附的可打印性。研究发现,某些组合物提供了低于1kΩ /sq的薄板电阻,并且对纸质基板的良好粘附仅具有一层丝网印刷,这表明了商业应用的潜力,例如单使用电子,柔性加热器等。< /div> < /div> < /div>该研究还显示了循环弯曲对准备层的电气参数的影响。这项研究强调了矩阵的生物降解性的重要性,这是有助于可持续电子领域的。总体而言,这项研究提供了开发环保,灵活的电子组件的见解,突出了可生物降解材料在这个不断发展的行业中的作用。
抽象的热电材料和设备近年来引起了极大的关注,因为它们将废热转化为可用的电力,为可持续能源收集开辟了新的途径。随着热电材料和设备领域的研究继续增长,需要有效且可扩展的制造方法。在各种制造技术中,印刷方法已成为生产热电材料和设备的有前途的方法,提供了低成本,高吞吐量和设计灵活性等优势。在这里,我们概述了制造热电材料和设备的印刷方法的最新进展。我们讨论了与各种印刷技术相关的关键原则,挑战和机会,包括丝网印刷,喷墨打印和3D打印,重点关注其在热电材料和设备中的应用。此外,我们强调了优化印刷参数,墨水配方和后加工方法的进展,以增强印刷材料和设备的热电性能。最后,我们提供了有关热电材料和设备印刷方法领域的前景和潜在研究方向的见解。本评论旨在详细概述热电材料和设备的最新印刷技术,并为在这个快速发展的领域工作的研究人员和从业人员提供参考。
1弗劳恩霍夫太阳能系统ISE ISE,Heidenhofstraße2,79110 Freiburg,德国2 ASYS Automation Systems GmbH,Benzstr。10,89160德国Dornstadt 3 Gallus Ferd。 rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr 2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。 该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化 在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。 此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。10,89160德国Dornstadt 3 Gallus Ferd。rüeschag,Harzbüchelstrasse34,9016 St. Gallen,瑞士4 Lehner Engineering GmbH,Ebnettstrasse 18,9032,瑞士5 1,0676德国Bitterfeld-Wolfen 7 Kurt Zecher GmbH,Görlitzerstr2,33098德国Paderborn 8技术大学达姆斯塔特,Magdalenenstraße2,64289 Darmstadt,德国,德国9现在,现在有:Thieme Gmbh&Co。KG,Robert-Bosch-Bosch-Straße1,79331 teneningen,Dergem摘要:在研究项目“摇滚明星”中开发的创新的高通量旋转式示范机上制造的钝化发射器和后触点(PERC)太阳能电池。该机器旨在使用新开发的航天飞机运输系统执行最多600 mm/s的硅太阳能电池的金属化在第一个实验中,多晶硅(MC-SI)PERC太阳能电池在后侧金属,旋转筛网印刷获得的平均转换效率为η= 19.3%,该效率与带有筛网印刷后侧的参考单元的水平相同金属化(η= 19.3%)。此外,提出了一个9个细胞示范器模块,其中显示了在演示器和Smartwire(SWCT)互连上部分金属金属的细胞。关键字:硅太阳能电池,制造和加工,PERC,金属化,旋转印刷1简介平面丝网印刷(FSP)是晶体硅(SI)太阳能电池的最新技术。尽管在过去几年内生产率取得了显着进步,但FSP工艺几乎接近技术限制,而吞吐量的进一步增加。应对这一挑战的一种非常有前途的方法是应用高生产性旋转印刷方法,即旋转丝网印刷(RSP)和Flexographic Printing(FXP)。在资助的研究项目中»摇滚明星«(合同号13N13512),一个项目合作伙伴和研究机构的项目构成,已经为开发旋转印刷演示机的雄心勃勃的目标设定了一个雄心勃勃的目标,该机器能够实现高达600 mm/s的太阳能电池的金属化,这与每小时8000 Wafers of 8000 wafers on Single of 600 mm/s的印刷速度相当于。在项目中,已经在开发材料,打印过程和机器平台方面做出了巨大的努力。在这项工作中,我们介绍了»摇滚之星«演示器的概念以及第一个PERC太阳能电池的I-V-结果,这些perc太阳能电池已使用演示器机器上的旋转丝网印刷单元进行了部分金属化。此外,还提出了通过互连»岩石星«Perc太阳能电池与智能Wire Interonnection技术(SWCT)制造的9细胞演示器模块。2摇滚乐演示器平台2.1演示器机器»摇滚明星的主要目标是开发用于硅太阳能电池高通量金属化的创新机器平台。雄心勃勃是要根据对所应用的旋转印刷方法进行基本和激烈评估的基础来实现具有高技术准备水平(TRL)[1] [1]的机器[2-6]。
摘要:了解从基于智能手机的电化学发光 (ECL) 传感器提取的多模态数据之间的关系对于开发低成本的即时诊断设备至关重要。在这项工作中,使用随机森林 (RF) 和前馈神经网络 (FNN) 等人工智能 (AI) 算法定量研究 Ru(bpy) 3 2+ 发光体浓度与其实验测量的 ECL 和电化学数据之间的关系。使用一次性丝网印刷碳电极开发了一种带有 Ru(bpy) 3 2+ /TPrA 的基于智能手机的 ECL 传感器。在施加 1.2 V 电压后,同时获得 ECL 图像和电流图。通过 RF 和 FNN 算法分析这些多模态数据,从而可以使用多个关键特征预测 Ru(bpy) 3 2+ 浓度。在 0.02 µM 至 2.5 µM 的检测范围内,实际值和预测值之间实现了高相关性(RF 和 FNN 分别为 0.99 和 0.96)。使用 RF 和 FNN 的 AI 方法能够使用易于观察的关键特征直接推断 Ru(bpy) 3 2+ 的浓度。结果表明,数据驱动的 AI 算法在分析多模态 ECL 传感器数据方面非常有效。因此,这些 AI 算法可以成为建模库的重要组成部分,并成功应用于 ECL 传感器数据建模。
引言激光修剪是指使用激光控制电子电路元件的操作参数的制造过程。最常见的方法是细微调整电阻组件,基本过程方法包括跌落切割,边缘切割,L-CUT,等。电阻取决于物体的几何特性,宽度和厚度(高度)以及目标材料的独特电阻,这是一种被动修剪,通过改变对象的几何特性来控制目标的电阻值[1,2,3,4]。unicl(产品名称)用作修剪的热抗体,是一种经济友好的热源,由于非常清洁和出色的能量效率和快速温度的升高,因此具有出色的反应。unicl的IR加热器是通过使用面具的打印过程制造的,核心热源组件IR加热器使用不锈钢作为基板,最重要的是化学材料(Exouteric source),绝缘层和绝缘层和一个合并的金属和无机材料。它具有一种结构,其中使用丝网印刷形成电线,并用厚膜形成。图1显示了各种加热板的示例。在这项研究中,我们将解释激光修剪过程的开发,这些过程可以通过将激光处理方法应用于校正IR加热器温度特性的电阻特性的变化来同时提高产品的产量和精度。
基于氧化物固体电解质的全固态电池 (ASSB) 是未来高能量密度、更安全的电池的有希望的候选者。为了估算氧化物基 ASSB 的未来制造成本,对固体氧化物燃料电池 (SOFC) 和多层陶瓷电容器 (MLCC) 生产技术进行了系统的识别和评估。基于需求分析,评估了这些技术在 ASSB 生产中的适用性。使用蒙特卡罗模拟对最有前途的技术进行技术准备情况比较。对氧化物基 ASSB 生产场景的全面概述和系统分析揭示了成熟的湿涂层技术(例如流延和丝网印刷)的显著优势。然而,气溶胶沉积法等新兴技术可能会使高温烧结步骤无效。通过与 SOFC 生产进行比较并采用传统电池生产的学习率,对石榴石基 ASSB 的制造成本进行了估算,表明如果石榴石固体电解质的材料成本可以降低到 60 美元/千克以下,那么电池级(包括外壳)的价格可以低于 150 美元/千瓦时。基于这些发现,可以得出从实验室研究到工业规模的扩大方案,为大规模生产高能量密度的更安全电池铺平道路。
摘要 氧化石墨烯 (GO) 涂层电极为酶促葡萄糖传感提供了极好的平台,这种传感是由葡萄糖氧化酶和电化学转导引起的。本文中,我们表明,将 GO 与壳聚糖 (GO + Ch) 混合后,GO 层对葡萄糖检测的灵敏度会加倍,如果利用壳聚糖与 GO (GO−Ch) 的共价结合,灵敏度会增加八倍。此外,复合材料 GO−Ch 的电导率适用于电化学应用,而无需 GO 还原,而这通常是 GO 基涂层所必需的。通过标准羧酸活化/酰胺化方法利用壳聚糖丰富的氨基侧链实现 GO 的共价改性。通过与使用未活化 GO 作为前体实现的临时合成对照样品进行比较,证明了功能化的成功。复合材料 GO−Ch 通过滴铸法沉积在标准丝网印刷电极上。与壳聚糖-GO 混合物和纯 GO 相比,结果表明,由于酶结合位点数量多和羧酸活化合成步骤中 GO 的部分还原,葡萄糖电化学响应具有更高的可靠性和效率。
图 1. 当今正在开发的有机电化学晶体管 (OECT) 示意图,涵盖简便的制造技术和广泛的应用。印刷工艺:丝网印刷,经许可改编,[57] 版权所有 2019,Wiley-VCH;喷印,经许可改编,[58] 版权所有 2020,美国化学学会。基于激光的图案化:激光烧蚀图案化,经许可改编,[59] 版权所有 2012,Wiley-VCH;激光图案化 OECT,经许可改编,[60] 版权所有 2020,IOP Publishing Ltd. 纳米压印光刻:S/D 纳米压印,经许可改编,[61] 版权所有 2016,Wiley-VCH;有源层纳米压印,经许可改编,[62] 版权所有 2013 SID。基于纤维的图案化:基于纳米纤维的图案化,经许可改编,[63] 版权所有 2019,美国化学学会;基于编织的,经许可改编,[53] 版权所有 2011,Wiley-VCH。生物传感器:葡萄糖传感器,经许可改编,[64] 版权所有 2019,Springer Nature;离子传感器,经许可改编,[65] 版权所有 2018,Wiley-VCH。逻辑电路:逆变器和 NAND,经许可改编,[46] 版权所有 2019,Springer Nature;惠斯通电桥,经许可改编,[66] 版权所有 2017,Wiley-VCH。神经形态装置:纳米线人工突触,经许可改编,[67]
ThreeBond 的各向异性导电膏 (ACP) 是一种液体材料,由均匀分散在高绝缘性粘合剂成分中的导电颗粒组成。ACP 是一种功能性材料,通过丝网印刷工艺中的应用和干燥产生各向异性导电膜。它能够通过数十秒的热压工艺在物理连接处实现以下所有三个动作: (1) 在电子元件之间形成电连接; (2) 保持相邻电极之间的绝缘; (3) 粘合和固定。ThreeBond 在过去 30 年中一直致力于与 ACP 相关的研发,推出的产品在热封连接器、显示设备、手机背光、薄膜开关和触摸屏等市场上广受好评。在此期间,越来越先进的高功能电子元件的开发大大改变了人们对 ACP 的期望。除了高可靠性和功能性之外,市场现在还要求更高的可用性、更高的长期可存储性以及与环境标准的兼容性,例如无卤素*1 和无甲苯产品。本期讨论了我们的 ACP 与其他连接器材料的区别,并论证了 ACP 的优越性。它还介绍了为满足市场需求和环境要求而开发的产品(ThreeBond3373 系列)。*1:氯 < 900 ppm、溴 < 900 ppm、氯 + 溴 < 1,500 ppm 此后,ThreeBond 将缩写为“TB”。
神经技术的可打印电子设备是一个快速新兴的领域,利用各种印刷技术来制造电子设备,提供快速原型,可扩展性和成本效益的优势。这些设备在神经生物学中具有有希望的应用,使神经元信号和受控药物传递的记录。本评论概述了印刷技术,用于神经设备制造的材料及其应用。讨论的打印技术包括喷墨,丝网印刷,弹性印刷,3D打印等等。每种方法都有其独特的优势和挑战,从精确的打印和高分辨率到材料兼容性和可扩展性。选择合适的可打印设备的材料至关重要,考虑到生物相容性,灵活性,电性能和耐用性等因素。导电材料(例如金属纳米颗粒和导电聚合物)通常用于神经技术。电介质材料,例如聚酰亚胺和聚苯乙烯,在设备制造中起着至关重要的作用。可打印设备在神经技术中的应用涵盖了各种神经探针,电代理阵列和微电极阵列。这些设备具有灵活性,生物相容性和可扩展性,使其具有成本效益,适合临床前研究。但是,需要解决一些挑战,包括生物相容性,精度,电性能,长期稳定性和调节障碍。本评论强调了可打印电子学的潜力,可以推进我们对大脑的理解和治疗神经系统疾病,同时强调克服这些挑战的重要性。