摘要 —本文介绍了一种用于解决晶圆上测试系统中探针-探针泄漏引起的误差项的先进校准方法。介绍了一种新的 12 项误差模型,用于晶圆上测试系统,包括矢量网络分析仪 (VNA)、频率扩展器(如果有)、电缆/波导、探针、探针接触垫和探针-探针泄漏。开发了一种两步校准过程和一种算法,该算法具有四个片上校准标准,包括一个未定义的直通、两对未定义的对称反射(例如开路-开路和短路-短路对)和一对已知匹配负载。此外,还提出了一种改进的匹配负载电路模型以提高精度。已经在 0.2 GHz 至 110 GHz 频率范围的失配衰减器上测试了该校准方法,并将结果与数值模拟和现有校准方法进行了比较。结果表明,衰减器的 |S 11 | 更连续,|S 21 |提高了1.7 dB。显然,所提出的校准方法具有更简单的校准过程和对校准标准的要求不那么严格,而校准标准是毫米波和太赫兹频率下晶圆系统校准的关键。更重要的是,新的校准方法更适合DUT具有可变长度的测量。
本文介绍了 Facebook AI 提交的 WMT20 共享新闻翻译任务。我们专注于低资源设置并参与两对语言对,即泰米尔语 ↔ 英语和因纽特语 ↔ 英语,其中域外双语文本和单语数据有限。我们使用两种主要策略解决低资源问题,利用所有可用数据并使系统适应目标新闻领域。我们探索了利用所有语言的双语文本和单语数据的技术,例如自监督模型预训练、多语言模型、数据增强和重新排名。为了使翻译系统更好地适应测试域,我们探索了数据集标记和域内数据的微调。我们观察到,根据语言对的可用数据,不同的技术提供了不同的改进。基于这一发现,我们将这些技术集成到一个训练流程中。对于 En → Ta,我们探索了一种无约束设置,其中包含额外的泰米尔语双语文本和单语数据,并表明可以获得进一步的改进。在测试集上,我们提交的最佳系统分别对 Ta → En 和 En → Ta 实现了 21.5 和 13.7 BLEU,对 Iu → En 和 En → Iu 分别实现了 27.9 和 13.0。
和循环寿命。但是,LIB遭受了李金属的易燃性,毒性,成本和稀缺性的问题。[4,5]基于水溶液和地球丰富元素的充电电池被认为是当前LIB的更可持续的替代品。水性金属离子电池本质上是安全的,环保的,便宜的,并且能够在大型电流下运行。[6–8]水锌离子电池(ZIB)是一种类型,具有高理论能力(820 mAh g-1)和金属锌的低电化学潜力(-0.76 v Vs标准氢气触发),[9-13],但[9-13],但对于ZIB的高度稳定的摩托模具仍是ZIB的高度稳定性。普鲁士蓝色类似物(PBA)具有X M [Fe(Cn)6] Y·N H 2 O(0 PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。 [18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。 [9,21,22] Liu等。 首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。 [24] Mantia等。 [30]PBA的容量可以达到120 mAh g-1 [14-17],并且由于存在两对氧化还原夫妻,并且稳定性非常出色,并且稳健的3D开放式框架结构允许插入各种碱离子离子而无需分解。[18–20]但是,PBA仅为Zn 2 +阳离子(通常小于80 mAh g-1)提供相对较低的特性容量,而Zn 2 +的插入可以导致不受控制的相变和导致性能降级。[9,21,22] Liu等。首先提出了使用菱形Zn 3 [Fe(CN)6] 2(ZnHCF)阴极的ZiB,该阴极的容量低于65.4 mAh g -1,在100个周期后的能力保留76%。[24] Mantia等。[30][23]合成了一个立方结构PBA(CUHCF)用于Zn 2 +存储,该阴极完成了100个循环,其容量为56 mAh g-1。表明,CuHCF中的容量衰减可以归因于相位转变为第二相,而该相位在电脑上的活性较小。[25,26]为了减少Zn 2 +插入产生的相变影响,研究人员采用了低甚至零Zn 2 +浓度的电解质,以使NIHCF // Zn,[27] Cuhcf // Zn,[28],[28],[28]和NAFE-PB // Zn [29] [29] [29] hybrid-ion-ion-ion-ion-ion-ion-ion-ion-ion。尽管如此,尽管这些阴极中的Zn 2 +的存储能力仍然很低,尽管通过增加扫描电压来改善周期寿命。
摘要:发展可持续农业实践需要增加我们对植物 - 微生物相互作用的了解。为了研究这些相互作用,需要用于操纵非模式微生物的新遗传工具。为了满足这一需求,我们最近报告了不依赖底盘的重组酶辅助基因组工程 (CRAGE) 的开发。CRAGE 依赖于两对互斥的 lox 位点之间的盒式交换,并允许将大型复杂基因构建体直接、单步染色体整合到不同的细菌物种中。然后,我们通过引入第三个互斥的 lox 位点扩展了 CRAGE,创建了 CRAGE-Duet,它允许两个构建体的模块化整合。CRAGE-Duet 比 CRAGE 更具优势,尤其是在需要繁琐的重新克隆步骤来构建单整合构建体时。为了证明 CRAGE-Duet 的实用性,我们从促进植物生长的根瘤菌 Pseudomonas simiae WCS417r 中创建了一组菌株,这些菌株表达了各种荧光标记基因。我们在共聚焦显微镜下同时可视化了这些菌株,证明了 CRAGE-Duet 在创建生物系统以研究植物 - 微生物相互作用方面的实用性。关键词:细菌菌株工程、基因组工程、基因组编辑、CRAGE、Cre-lox 重组、荧光蛋白
配体可以充当两个采用n ˆ o - 和o o o - 螯合模式的虹膜中心的辅助配体。为了调整这种双核复合物中激发态的能量,2-(2,4-二苯基)吡啶(HDFPPY)和2-苯基苯甲苯二唑(HPBTZ)(HPBTZ)用作环的配体,以分别与蓝色 - 或橙色的Homo-emissive yy-yy-emissive-yy-emissive yy-yy-emissive-yyy-yyy-yyy-yyy-yyy-yyys and yyys一起使用[ir(dfppy)2] 2(pico)和[ir(pbtz)2] 2(pico)。此外,在第一次,也获得了短桥的杂粒元素化的双核配合物(通过和yb,带有公式[ir(dfppy)2](pico)[ir(pbtz)2]和[ir(pbtz)2]和[ir(pbtz)2] 2](pico)2](pico)[ir(pico)[ir(dfpppy)2])。取决于在小脚桥桥的两侧的环数配体的相互排列,获得了两对非映异构体的夫妻并有效地分离,如NMR和DFT研究所证明的那样。报道的双核复合物具有高度发光量子产率(PLQY)高达67%的高度发射,与其单核类似物(B和Y)相当。由于其氧化还原过程的完全可逆性,所有复合物也在溶液处理的有机发光二极管中进行了测试,从而提供了基于异核 - 核环含量硫化锂(III)配合物的独特OLED。
I.的实现易于断层的通用量子计算机是一个巨大的挑战。在架构的每个级别,从硬件实现到量子软件,都需要克服困难的问题。在堆栈中间徘徊,量子错误纠正代码对硬件设计和软件编译都影响。,它们不仅在减轻噪声和错误操作方面发挥了重要作用,而且在制定协议以提取必要的资源将通用性授予错误纠正的量子计算机的必要资源[1]中发挥了重要作用[1]。因此,量子误差校正代码的研究和设计是在通用量子计算的途中要执行的主要任务之一。一类精心研究的量子错误校正代码是Calderbank-s-s-s-s-steane代码(CSS代码)[2],[3],它们是稳定器量子代码[4],[5]。CSS代码比一般稳定器代码的优点是它们与经典编码理论中已研究的线性代码的密切联系。可以通过组合两个二进制线性代码来构建CSS代码。大致来说,一个代码在Pauli X -Basis中执行奇偶校验检查,而另一个代码在Pauli Z -Basis中进行了奇偶校验检查。不能使用任何两个二进制线性代码:每个代码空间中的任何两对代码单词都必须具有重叠。基于几何,同源或代数结构[6] - [17]设计了几个CSS代码的家族,但是,可以实现哪些参数。因此,我们仅考虑除了能够保护量子信息外,量子错误纠正代码还必须允许某些机制处理编码的信息而无需提升保护。总是有可能发现某些操作在编码信息上实现所需的操作,但是这些操作可能会在系统中传播错误。
Janus 是一次由两艘航天器组成的 SmallSat 任务,旨在飞越两对不同的双星近地小行星,即 (175706) 1996 FG3 和 (35107) 1991 VH。两艘相同的 Janus 航天器计划于 2022 年 8 月 1 日开始的发射期间作为 NASA Psyche 任务的辅助有效载荷,由 SpaceX Falcon Heavy 运载火箭发射。Janus 由科罗拉多大学博尔德分校的首席研究员 Dan Scheeres 博士领导,由洛克希德马丁公司管理、建造和运营。这些行星 SmallSat 与大型任务有许多相似的深空挑战:Janus 必须执行深空机动以实现每秒数百米的 ΔV 才能到达目的地,关闭高达 2.4 AU 范围内的电信链路,在太阳合相期间自主管理长达数月的电信中断,在 1.62 AU 的最大太阳范围内运行,并在行星际空间中存活大约四年,然后才会遇到目标小行星。在相遇期间,航天器将返回小行星的高分辨率可见光和红外图像。在将 Janus 送上发射台的过程中,实施团队成功管理了积极的任务时间表,尽管受到 COVID-19 相关供应链影响和工作环境的影响,同时仍保持了 SIMPLEx-2 成本上限的目标。Janus 是可实现且负担得起的 SmallSat 科学任务的探路者,并展示了经验丰富的深空任务工程团队、SmallSat 商业组件行业和具有前瞻性的 NASA D 类科学任务模型之间的宝贵伙伴关系。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
自Bennett等人以来。拟议的传送在1993年[1],量子状态传输对于开发量子计算和量子通信至关重要[2,3]。标准的传送理论方法基于希尔伯特空间中爱因斯坦 - 波多尔斯基 - 罗森(EPR)对[4]的特性。纠缠和投影假设以及发件人和接收者之间的经典通信通常分别称为爱丽丝和鲍勃,构成了传送协议的基本要素。在1990年代后期,通过使用参数下调(PDC)中产生的纠缠光子(PDC)进行的Innsbruck [5]和Rome [6]的实验中实现了传送。关于谁首先执行真正的量子传送存在存在差异[7]。一方面,因斯布鲁克实验使用了两对纠缠的光子,四个光子之一被用作触发器来生成要传送的单粒子状态[5,8]。四光子来源的一个显着特征是纠缠交换的第一个实验[9,10]。然而,鉴于仅在一个自由度和线性光学元件中使用纠缠的两个光子的四个极化钟状态[11],请参考文献中描述的传送方案。1在Innsbruck计划中无法获得100%的成功。此外,该实验的一个有争议的方面是传送的后选择性或非稳定性[12-14]。1。参考。15进行了。另一方面,在罗马传送实验中,使用了一对下调的光子,并且要传送的状态在一个光子的两个自由度之一中编码[15],这与参考文献中的工作有所不同。相比之下,贝尔状态测量(BSM)取得了100%的成功。16,参考文献中给出的理论建议的不同实施。Wigner形式主义构成了希尔伯特空间中东正教配方的补充方法,用于研究用PDC实施的量子光学实验[17-25]。
人生历史Dicentra Eximia(狂野的出血心)是富马西亚科中一种有吸引力的多年生草药。Brooks(1911)将D. Eximia植物描述为精致而美丽,Rydberg(1929)指出,这是他见过的最美丽的本地花之一。dicentra eximia具有粗壮的鳞状根茎,并在长叶柄上细分(蕨类植物)的基部叶片分裂(蕨类植物),这些叶柄在底部略微膨胀。叶子可能长4 dm,但扩散的生长习惯可以使植物显得宽或宽(Cahalan 2008,Longfellows 2024)。Dicentra Eximia的开花茎是无叶的,通常比叶子更长,终止于由短分支上的几个小花簇组成的花序。花萼是一对保护发育中的花蕾的小萼片,在盛开的时间被丢弃。花冠是双侧对称的,包括两对花瓣。大的外部花瓣长约2厘米,它们固定在一起,形成一个细长的心形形状,以4-8毫米长的一对喇叭形裂片结尾,而内部花瓣大多是隐藏的,除了它们的波峰超出了外部花瓣的叶子之外。所产生的结构与吊坠液滴产生心脏的印象。因此,通用名称(Cahalan 2008,Gracie 2012)。D. exiamia花颜色可能从深玫瑰紫色到粉红色,或者偶尔白色。果实长到卵形胶囊长18-22毫米。(请参阅Britton and Brown 1913,Rydberg 1929,Fernald 1950,Stern 1961&2020,Gleason and Cronquist 1991,Tebbitt等人,Tebbitt等人。2008)。2008)。