ESTR1003 ENGG1310 Engineering Physics: Electromagnetics, Optics and Modern Physics 工程物理 R Prof. ZHAO Ni N
物理科学与工程 PE1 数学 所有数学领域,包括纯数学和应用数学,以及计算机科学的数学基础、数学物理和统计学 PE1_1 逻辑与基础 PE1_2 代数 PE1_3 数论 PE1_4 代数和复几何 PE1_5 李群、李代数 PE1_6 几何与全局分析 PE1_7 拓扑 PE1_8 分析 PE1_9 算子代数和泛函分析 PE1_10 ODE 和动力系统 PE1_11 偏微分方程的理论方面 PE1_12 数学物理 PE1_13 概率 PE1_14 数理统计 PE1_15 通用统计方法和建模 PE1_16 离散数学和组合数学 PE1_17 计算机科学的数学方面 PE1_18 数值分析 PE1_19 科学计算和数据处理 PE1_20 控制理论、最优化和运筹学 PE1_21 数学在科学中的应用PE1_22 数学在工业和社会中的应用 PE2 物质的基本构成 粒子、核、等离子体、原子、分子、气体和光学物理学 PE2_1 基本相互作用的理论 PE2_2 基本相互作用的现象学 PE2_3 使用加速器的实验粒子物理学 PE2_4 不使用加速器的实验粒子物理学 PE2_5 引力相互作用的经典和量子物理学 PE2_6 核、强子和重离子物理学 PE2_7 核和粒子天体物理学 PE2_8 气体和等离子体物理学 PE2_9 电磁学 PE2_10 原子、分子物理学 PE2_11 超冷原子和分子 PE2_12 光学、非线性光学和纳米光学 PE2_13 量子光学和量子信息 PE2_14 激光、超短激光和激光物理学 PE2_15 热力学 PE2_16 非线性物理学 PE2_17 计量学和测量学PE2_18 平衡和非平衡统计力学:稳态和动力学 PE3 凝聚态物理 结构、电子特性、流体、纳米科学、生物物理学 PE3_1 固体结构、材料生长和特性 PE3_2 凝聚态的机械和声学特性、晶格动力学 PE3_3 凝聚态的传输特性 PE3_4 材料的电子特性、表面、界面、纳米结构 PE3_5 半导体和绝缘体的物理特性 PE3_6 宏观量子现象,如超导性、超流体、量子霍尔效应 PE3_7 自旋电子学
高级本科生和初学者的量子物理和工程介绍。Topics covered include historical developments, quantum postulates, Schr ö dinger equation, quantum states and observables, measurement in quantum mechanics, quantum confined states in potential wells and atoms, quantum tunneling, uncertainty relations, Dirac notation, spin, quantum dynamics, quantum information and the qubit, quantum computation, quantum information processing, and quantum circuits, quantization of light and the photon, quantization of simple机械和电气超导电路。该课程将使学生能够在与电子和光学设备,固态物理学和材料科学以及量子信息和计算方面的领域进行高级课程。
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。
3.3 船舶配电系统解决方案 ...............................................................................................................................................32 3.3.1 需求和限制条件细述 ..........................................................................................................................................................................32 3.3.2 配电结构方案 ....................................................................................................................................................................................... 41 3.3.3 施耐德电气产品及应用 ..................................................................................................................................................................... 41 3.3.3.1 中压配电盘 -MCset Marine ............................................................................................................................................................42 3.3.3.2 中压马达控制中心 -Motorpact TM ................................................................................................................................................50 3.3.3.3 中压环网柜方案 - 中压环网应用和 RM6 .....................................................................................................................................56 3.3.3.4 中压变压器 ...................................................................................................................................................................................... 60 3.3.3.5 低压配电盘 -MB301M ...........
责任编辑:杨瑞静 美编:蔡云龙 电话:010-58302828-6868 E-mail:ysbyangruijing@163.com
数学物理学 2 12MATHP502 原子核 2 12PHEPN502 天体物理学 2 12PHAST502 低温物理学 1 12PHCMP502 量子传输物理学 2 12PHAPP504 光学特性 2 12PHOPT502 超导量子物理学 1 12PHQUI502 行星与空间物理学 2 12PHGEO504 生物物理学 2 12PHBCS502
从而安全完成拦阻着舰[6~7]。目前,应用最为广泛的着舰技术是等角滑翔技术。在着舰的最后阶段,舰载机在截获合适的下滑道后,保持相同的下滑道角、俯仰角、速度和下沉率,直至与飞行甲板接触,实现撞击着舰[8-9]。该技术的优点是在着舰前最关键的20s内,飞行员只需保持已有飞行状态,修正舰船运动、气流场等引起的误差,避免了复杂操作可能带来的误差与危险[10-11]。等角滑翔技术的关键是飞行员必须准确获取下滑道及其相对位置信息。