2022)...................................................................................... 71
4北京基因组和精密医学技术的主要实验室,北京100101,中国对应作者:Fang Xiangdong,电子邮件:fangxd@big.ac.ac.cn
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
总务省委托项目“全球量子密码通信网络构筑研究开发”将开展研究开发,确立实现全球范围的量子密码通信网络的核心技术,其用途包括国家之间、国内重要机构之间、医疗和金融领域等机密信息交换。具体来说,我们旨在建立(I)量子通信和密码链路技术、(II)可信节点技术、(III)量子中继器技术、以及(IV)广域网络建设与运行技术,这些技术具有很强的实用性,能够实现更快、更远距离的通信。
会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
新一代信息技术与制造业深度融合,引发深远的产业变革,形成新的生产方式、产业格局、商业模式和经济增长点。各国都在推动3D打印、移动互联网、云计算、大数据、生物工程、新能源、新材料等技术创新。基于信息物理系统的智能装备、智能工厂等智能制造正在掀起新一轮制造业革命。制造业的范围正在不断扩大,包括众包、协同设计、大规模定制、精准供应链管理、全产业链生命周期管理、可穿戴设备、自动化设备和车辆等。中国制造业正面临转型升级的重大机遇
行为与免疫/15 CAAI人工智能研究Wiley https://www.sciopen.com/journal/2097-194X 16计算语言学MIT Perss https://dblp.uni-trier.de/de/de/db/journals/coling/ https://dblp.uni-trier.de/db/journals/cagd/ 18 Computer Graphics Forum Wiley https://dblp.uni-trier.de/db/journals/cgf/ 19 Computer Supported Cooperative Work Springer https://dblp.uni-trier.de/db/journals/cscw/ 20 Computer Vision and Image Understanding Elsevier https://dblp.uni-trier.de/db/journals/cviu/ 21 Computer-aided设计Elsevier https://dblp.uni-trier.de/db/journals/cad/ 22数据和知识工程和知识工程Elsevier https:/知识发现Springer https://dblp.uni-trier.de/db/journals/datamine/ 24决策支持系统Elsevier https://dblp.uni-trier.de/db/journals/journals/dss/dss/
作为专门致力于工程学的“ Grandeécole”,Phelma的选择过程非常具竞争力。只有科学领域的法国学生的前10%才能进入这种高等教育系统。在一项名为“Préparatoiresclass class”的密集的2年课程之后,他们通过全国竞赛选择了“ Grandeécole”。经过3年的学习期,他们获得了“IlliphômeD'Ingénieur”,相当于工程学的MS,使他们能够担任工程师或继续获得博士学位。工程师文凭保证了法国的最佳职业道路。像Phelma这样的“Grandesécoles”也获得了硕士学位的认可。在这种情况下,招聘是由特定委员会完成的。
• 固体结构、材料生长和特性 • 凝聚态的机械和声学特性、晶格动力学 • 凝聚态的传输特性 • 材料、表面、界面、纳米结构的电子特性 • 半导体和绝缘体的物理特性 • 宏观量子现象,如超导性、超流动性、量子霍尔效应 • 自旋电子学 • 磁性和强关联系统 • 凝聚态 - 光束相互作用(光子、电子等) • 纳米物理学,如纳米电子学、纳米光子学、纳米磁性、纳米机电学 • 介观量子物理学和固态量子技术 • 分子电子学 • 无序系统的结构和动力学,如软物质(凝胶、胶体、液晶)、颗粒物质、液体、玻璃、缺陷 • 流体动力学(物理学) • 统计物理学:相变、凝聚态系统、复杂系统模型、跨学科应用 • 生物系统物理学
单元III 6 a)得出磁性材料的L3 C03 SM敏感性(X)和相对渗透率(µR)之间的关系。b)将不同类型的磁L4 cos SM材料与合适的示例分类,并提及它们的特性。或7 A)AR L4 COS SM原子的电子极化率为1.7 x 10-4°F.M 2。如果介电包含1.67 x 10 2 7原子 / nr',则AR气体在300 K处的静态介电常数是什么。b)解释磁性材料中域和L3 C03 SM域壁的形成。