全球 ATM 运行概念是由国际民航组织制定的,旨在实现安全、可持续和环保的空中交通运行,同时适应不断增加的交通量。ENRI 公布了其长期研究愿景,并一直致力于研究,以及在全球范围内开发和传播成果,以实现全球 ATM 运行概念 (GATMOC)。长期研究愿景需要根据社会环境的变化和新开发技术的引入进行审查。因此,ENRI 定期审查其长期研究愿景,考虑与 CARATS * 和 GANP ** 等其他空中交通系统长期愿景的协调,并于 2019 年发布了最新版本。未来将实现基于轨迹的运行 (TBO),其中飞机轨迹会提前调整和确定,飞机将在指定时间沿轨迹飞行。灵活的空中交通管理对于应对具有不同性能和用途的各种类型飞机的预期增加至关重要。新的研究愿景将未来几十年的研究课题以路线图的形式阐述,其中研究课题大致分为四个研究领域:“通过提高运行安全性和可靠性有效利用空域”、“通过空域运行效率有效利用空域”、“优化机场运营”和“改善空中交通系统的基础技术”,重点是提高研究潜力并持续长期为社会做出贡献。ENRI 将根据这一长期愿景开展研究和开发活动。
与神经元网络的通信是通往大脑更高世界的大门,而神经电子学可能就是打开这扇大门的钥匙。顾名思义,新术语“神经电子学”被提出来描述与神经元网络无缝接口的电子设备,以实现畅通无阻的双相信息交换。从结构上讲,神经电子器件与脑组织一样柔软,可以最大限度地避免机械失配引起的炎症和损伤。它们与主要侧重于解码和编码电生理序列(例如,单元动作电位和局部场电位)的传统脑机接口技术本质上的区别在于,它们能够解读和传输以复杂的分子结构编译的神经信息
主题 - 纳米和高级材料,探测器,传感器和表面(此主题还包括可穿戴设备,能源,可持续性,减少二氧化碳和健康应用的纳米和高性能材料。检测器,生物传感器,表面功能化和功能涂层也被解决。)
植物压力的研究核心科学大气压力单元植物光适应研究小组1组环境反应系统2功能性生物分子发现组组3土壤应力单位植物应力生理4植物分子生理学组分子生理学5生物应力单元组的植物 - 微生物相互作用6组植物 - 内部相互作用7植物免疫设计组8植物环境微生物学9大麦和野生植物资源中心遗传资源遗传资源单位遗传资源组基因组多样性10应用基因组学单位遗传资源和功能组11综合基因组育种12
请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。 本文件由全国量子计算与测量标准化技术委员会(SAC/TC587)提出并归口。 本文件起草单位:中国科学技术大学、济南量子技术研究院、中国科学院计算技术研究所、中国人 民解放军国防科技大学、中国标准化研究院、中国信息通信研究院、中国电子技术标准化研究院、深圳 市腾讯计算机系统有限公司、中国计量大学、武汉大学、华为技术有限公司、杭州知量科技有限公司、 上海图灵智算量子科技有限公司、阿里巴巴网络技术有限公司、深圳量旋科技有限公司等。
人工智能在现实应用中的挑战 人工智能在现实应用中需要克服许多挑战。例如,与实验室中人工智能的有限开发相反,现实世界的应用可能使用无限数量的假设,同时依赖移动或边缘计算形式的有限计算资源。现实世界的数据供应有限,并且在这种“小数据”上训练人工智能可能需要标记数据,而这很昂贵。目前趋势是使用所谓的“小数据”而不是大数据来构建较小的人工智能模型,因为许多现实世界的问题都是“小数据”问题。这需要元学习和多任务处理——以使用来自直接问题之外的知识为中心。生成模型在小数据上具有很好的泛化能力,并且比其他形式的深度学习提供更好的可解释性和可靠性。
2011年12月9日,对地观测与数字地球科学中心主任郭华东教授当选为中国科学院地球科学部委员。他是中国科学院对地观测与数字地球科学中心第一位当选的院士,这不仅是他个人的终身荣誉,也是对中国科学院对地观测与数字地球科学中心发展的一大助力。希望郭华东教授的当选能够为中心面向国家战略需求、面向国际科技前沿、面向“创新2020”、推动中国科学院对地观测与数字地球科学中心可持续发展提供有力支撑。30年来,郭华东教授在国内外雷达遥感研究与应用领域发挥了重要的引领作用。建立了无植被沙丘雷达散射几何模型、多频多时相雷达地物识别方法,在空间信息领域进行了开创性研究。他在雷达体制方面的研究,揭示了雷达电磁作用机理的特点。无植被沙丘几何散射模型,从理论上证明了SAR对干沙的穿透能力。发展了雷达极化理论,研究了火山熔岩的去极化现象和植物的多极化现象。他提出的多频多时相雷达处理与识别方法,为国家减灾减灾、矿产普查等需求做出了重要贡献。郭教授主持研制的数字地球概念技术模型和“数字地球原型系统DEPS/CAS”被国际同行誉为“里程碑式贡献”。他参与创立了国际数字地球学会,创办了《国际数字地球学报》并担任主编,推动了全球数字地球的发展。