紫外线 (UV) 光是电磁波谱中波长比人眼可见波长短的能量。紫外线是波长范围从 100 到 400 纳米(介于 X 射线和可见光之间)的电磁波。紫外线分为真空紫外线 (100–200 纳米)、UV-C (200–280 纳米)、UV-B (280–315 纳米) 和 UV-A (315–400 纳米)。UV-C 光谱中的能量波具有杀菌效率,可提供高效的消毒效果。
• 詹姆斯·韦伯太空望远镜的中红外仪器 (MIRI) 有四种观测模式。8 月 24 日,支持其中一种模式的装置,即中分辨率光谱 (MRS),在进行科学观测设置时,似乎出现了摩擦增加的情况。该装置是一个光栅轮,科学家可以在使用 MRS 模式进行观测时选择短波长、中波长和长波长。在对该问题进行初步健康检查和调查后,一个异常审查委员会被召集起来,以评估最佳的解决途径。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,在中波长光谱(3-5μm)内运行,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以与全高清 TVC SPOTTER 配合使用 NVG 兼容激光指示器,以提供增强的低光目标标记能力。如果需要,可以选择 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
补充参考文献 1. Lincoln, CN, Fitzpatrick, AE 和 van Thor, JJ 光活性黄色蛋白飞秒激发下的光异构化量子产率和非线性截面。Phys. Chem. Chem. Phys. 14 , 15752-15764 (2012)。 2. Kim, JE, Tauber, MJ 和 Mathies, RA 视觉中波长依赖性的顺反异构化。Biochemistry 40 , 13774-13778 (2001)。 3. Shoeman, RL, Hartmann, E. 和 Schlichting, I. 生长和制造纳米和微晶体 Nat Protoc 正在印刷中 (2022)。 4. Groot, ML, vanGrondelle, R., Leegwater, JA 和 vanMourik, F. 绿色植物和细菌红细菌光系统 II 反应中心的自由基对量子产率。亚皮秒脉冲下的饱和行为。J. Phys. Chem. B 101 , 7869-7873 (1997)。5. Claesson, E. 等人。飞秒 X 射线激光捕获的光敏色素蛋白的一级结构光响应。eLife 9 , e53514 (2020)。6. Sugahara, M. 等人。油脂基质作为用于序列晶体学的多功能蛋白质载体。自然方法 12 , 61-3 (2015)。7. Li, H. 等人。使用时间分辨的串行飞秒晶体学捕捉光系统 II 从 S1 到 S2 转变的结构变化。IUCrJ 8,431-443 (2021)。8. Grünbein, ML 等人。通过串行飞秒晶体学进行超快泵浦探测实验的照明指南。自然方法 17,681-684 (2020)。9. Nogly, P. 等人。飞秒 X 射线激光捕获细菌视紫红质中的视网膜异构化。科学 361,eaat0094 (2018)。10. Falahati, K.、Tamura, H.、Burghardt, I. 和 Huix-Rotllant, M. 通过非绝热量子动力学实现肌红蛋白中的超快一氧化碳光解和血红素自旋交叉。 Nat Commun 9 , 4502 (2018)。11. Barends, TR 等人。直接观察配体解离后 CO 肌红蛋白中的超快集体运动。Science 350 , 445-50 (2015)。