巨噬细胞成纤维细胞转化(MMT)将巨噬细胞转化为特定的弹药或损伤微环境中的肌细胞。MMT是涉及肺,心脏,肾脏,肝脏,骨骼肌肉以及其他器官和其他器官和组织的纤维化相关疾病中必不可少的生物学过程。此过程包括与各种细胞和分子相互作用并激活不同的信号转导途径。这篇综述深入讨论了MMT的分子机制,透明的关键信号途径,多种细胞因子和生长因子,并形成了一个复杂的调节网络。显着地,在此过程中转化生长因子B(TGF-B)及其下游信号通路的关键作用被澄清了。此外,我们讨论了MMT在生理和病理条件下的重要性,例如肺纤维化和心脏纤维化。本综述提供了一种新的观点,可以理解巨噬细胞与肌细胞之间的相互作用,以及用于预防和治疗MMT在邻链疾病中的新策略和目标。
已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
摘要 多尺度增强聚合物由于包含三种不同的尺度而具有增强的功能:微纤维、纳米纤维和纳米颗粒。这项工作旨在研究通过静电纺丝制备的不同聚合物基纳米织物作为多层纤维增强聚合物复合材料的增强夹层的适用性。研究了三种不同的聚合物:聚酰胺 6、聚丙烯腈和聚偏氟乙烯,包括纯的和掺杂有多壁碳纳米管 (MWCNT) 的。还研究了纳米管浓度对所得纳米织物性能的影响。制备了九种不同的纳米织物系统。研究了最终用作增强夹层的不同纳米织物系统的应力-应变行为,以评估机械性能的增强并评估其作为夹层增强材料的潜力。采用扫描电子显微镜来可视化静电纺丝纳米织物的形貌和微观结构。通过差示扫描量热法研究纳米织物的热行为,以阐明纳米织物的玻璃化温度和熔点,这可用于确定复合材料的最佳加工参数。引入 MWCNT 似乎可以增强聚合物纳米织物的机械响应。在玻璃化转变温度以上进行热处理后,对这些夹层增强材料的机械性能进行检查表明,形态和微观结构的变化可以进一步增强机械响应。