生物降解因条件温和、成本低廉、不产生二次污染等优点而受到广泛关注。6,7全球三分之二以上的N2O排放来源于土壤生态圈和水圈,在微生物反硝化途径的最后一步可以还原为无害的氮气(N2)。8–10一氧化二氮还原酶(N2OR)是唯一进行生物反硝化过程的酶,11,12因此,有效利用N2OR对于通过生物方法有效控制N2O排放至关重要。N2OR是一种周质多铜酶,为头尾相连的同型二聚体,每个单体包括两个结构域:C端的电子转移双核CuA中心和N端的催化四核CuZ中心。 13,14通常,CuA由6个氨基酸残基配体,包括1个蛋氨酸、1个色氨酸、2个半胱氨酸和2个组氨酸;CuZ则由7个组氨酸配体。15,16基于N 2 OR的三维结构,对N 2 O催化还原机理的一致看法是,N 2 O与CuZ的催化活性位点结合,然后电子从CuA转移,将N 2 O转化为N 2 。
汽车修理厂的废物管理不当对环境污染造成了重大影响。这些修理厂附近的区域暴露于大量废机油和其他碳氢化合物废物中。生物修复可能是一种实用的解决方案,因为它具有更好的成本效益和高完全矿化概率,不会造成二次污染。因此,本研究旨在分离、表征和鉴定能够利用和降解碳氢化合物的真菌。这项研究是通过收集马来西亚半岛北部地区受石油污染的场所(包括车间、家庭和污水处理厂)的土壤和水样本进行的。通过在含有废机油(碳氢化合物)作为唯一碳源的选择性琼脂上培养真菌来筛选碳氢化合物降解能力。在选择性琼脂上生长的真菌菌落被划线并传代培养到马铃薯葡萄糖琼脂上,直到获得纯分离物。通过 2,6-二氯苯酚靛酚 (DCPIP) 测定进行进一步筛选,以确认所有真菌分离物利用碳氢化合物的能力。根据形态学特征和显微镜观察对分离的真菌进行了鉴定。从石油污染环境中分离出的四种真菌被鉴定为 Aspergillus sydowii USM-FH1、Aspergillus westerdijkiae USM-FH3、Curvularia lunata USM-FH6 和 Chaetomium globusum USM-FH8。这些真菌分离物在烃类污染场地的生物修复中表现出良好的应用潜力。
由于环境中抗生素残留物的激增,二次污染正在加剧。这种现象可能引发多种意想不到的后果,导致形成持久的副产物,即使使用现代废水处理方法,这些副产物也难以分解。4 抗生素耐药性 (AMR) 对生物生态系统造成的广泛毒性和威胁使得其在水系统中的检测、消除和降解成为全球迫切关注的问题。随着全球人口的不断增长,有害污染物排放到水生环境和陆地生态系统中的数量也相应增加。为了应对这一挑战,必须使用能够有效消除水源中微量污染物的新型可持续技术。在水处理领域,长期以来一直依赖传统方法来解决微量污染物的问题。5 通过凝结、沉淀和活性炭吸附等各种处理方法,可以迅速消除水源中的这些污染物。 6 微污染物包括多种物质,如药品、个人护理产品和农药,对水处理设施构成重大挑战。这些化合物通常浓度较低,因此很难去除。凝结是一种常用的工艺,涉及向水中添加化学物质以促进颗粒和污染物的聚集。 7 虽然凝结可以有效去除较大的
高铬制革污泥是环境中铬污染的重要来源。作为最广泛使用的鞣制材料,碱式硫酸铬用于将易腐烂的胶原结构转化为不易腐烂的皮革基质(Famielec,2020)。然而,只有50%-60%的铬盐真正用于鞣制过程,其余的随后排入下水道,这不可避免地导致污水处理厂(WWTP)中的铬含量过高(Yang等,2020)。在排入生物处理系统之前,废水先用石灰和硫酸亚铁进行预处理,以去除溶解的铬和其他废化学品。大量沉淀的铬与其他有机沉积物一起作为初级化学污泥排出(Pantazopoulou和Zouboulis,2019)。此类污泥不仅富含不可生物降解的有机物,还富含不同存在形态的铬,增加了其有效处理的难度。随着环境的变化,制革污泥中的铬可能由三价铬转变为六价铬(Alibardi和Cossu,2016),六价铬的毒性是三价铬的10~100倍,且迁移性强、生物活性更高,具有致癌性和生物累积性(Singh等,2021)。高铬制革污泥因具有潜在的毒性,已被许多国家列为危险废物,其处置和资源回收受到严格限制。含铬制革污泥若处置不当会造成二次污染,给制革行业和环境带来巨大挑战(Malaiškien ˙e等,2019)。目前,含铬制革污泥的常见处理方法是焚烧(Kavouras等,2015),产生的灰渣则进行卫生填埋(Alibardi和Cossu,2016)。然而,焚烧过程存在一些固有的缺陷,主要问题包括产生灰烬中重金属的挥发、再分布和浸出潜力引起的慢性和急性毒性(Yu等,2021)。同时,作为一种新兴的污泥处理技术,热解由于其具有同时进行营养物回收( Hossain et al.,2020)、目标能量回收、重金属(HMs)的固定化与环境保护(谢等,2021)。污泥热解可生成高价值的燃料材料和低价的污染物去除生物炭(李等,2019;曾等,2021),可稳定有毒物质,降低其对环境的威胁(王等,2021)。而生物炭中的重金属因其对人类健康和全球环境的潜在不利影响而受到越来越多的关注。研究表明,由于重金属比有机物具有更高的热稳定性,在污泥热解过程中,大多数有毒重金属仍然富集在污泥生物炭中(王等,2022)。重金属的固定和稳定取决于污泥的性质和热解条件。