我们通过实验研究了平面二维阵列鼓面模式的电磁感应透明冷却,其中 Penning 阱中存储了多达 N ≈ 190 Be + 离子。对于所有 N 个鼓面模式都观察到了显著的亚多普勒冷却。对质心模式的定量测量表明接近基态冷却,运动量子数为 ¯ n ¼ 0 。3 � 0 。2 在 200 μ s 内获得。 测得的冷却速度比单粒子理论预测的要快,与量子多体计算一致。对于较低频率的鼓面模式,定量温度测量受到频率不稳定性的限制,但强烈建议全带宽接近基态冷却。这项进展将极大地提高大型捕获离子晶体在量子信息和计量应用中的性能。
摘要我们描述了表面电极离子陷阱连接的设计,这是大尺度离子陷阱阵列的关键元素。使用双目标优化方法设计电极,该方法保持了总伪电量曲率,同时最小化沿离子传输路径的轴向伪电势梯度。为了促进在多个陷阱区域中的平行操作的激光束输送,我们在此X结陷阱的每个臂上实现了集成的光学器件。提出了商业铸造制造的陷阱芯片的布局。这项工作建议在可扩展实现中改善离子陷阱连接性能的路线。与集成的光学解决方案一起,这有助于互连的二维阵列中的模块化陷阱离子量子计算。
伊贺曾担任日本研究所图书馆馆长和 P&I 微系统研究中心主任,现已退休,现为日本东京工业大学的名誉教授。他在东京工业大学获得工学博士学位,并加入东京工业大学的 P&I 实验室,最终成为一名正教授和山崎贞一讲席教授。伊贺于 1977 年首次提出了一种独特的半导体激光器,即腔面垂直于晶面的垂直腔面发射激光器 (VCSEL)。他是微光学的积极倡导者,利用梯度折射率微透镜阵列,并一直致力于实现与面发射激光器相结合的二维阵列光学装置的梦想。他是多部书籍的作者,包括《微光学基础》、《激光光学基础》、《光纤通信简介》、《半导体激光器工艺技术》和《面发射激光器》。
1。以C语言实现条件语句的程序。2。程序以C语言实现开关案例语句3。程序以实现循环构造INC语言。4。以C语言执行基本输入输出操作的程序。5。以C语言实现用户定义的功能的程序。6。程序以C语言实施递归功能。7。以C语言实现一维数组的程序。8。以C语言实现二维数组的程序。9。程序以C语言对二维阵列执行各种操作。10。以C语言实现多维数组的程序。11。程序以C语言实现字符串操纵功能。12。以C语言实现结构的程序。13。以C语言实施联盟的程序。14。以C语言执行文件处理操作的程序。15。程序以C语言执行图形操作。注意:无论他/她以合理的方式感觉,讲师都可以添加/删除/modifyExperiments。
离子阱系统是量子信息处理的主要平台,但目前仅限于一维和二维阵列,这限制了它们的可扩展性和应用范围。本文,我们提出了一种克服这一限制的方法,通过证明 Penning 阱可用于实现非常干净的双层晶体,其中数百个离子自组织成两个明确定义的层。这些双层晶体是通过加入非谐波捕获势来实现的,这在现有技术下很容易实现。我们研究了该系统的正常模式,发现了与单平面晶体模式相比的显著差异。双层几何形状和正常模式的独特性质开辟了新的机会——特别是在量子传感和量子模拟方面——这在单平面晶体中并不简单。此外,我们说明了可以扩展这里提出的想法来实现具有两层以上的多层晶体。我们的工作通过有效利用所有三个空间维度来增加捕获离子系统的维数,并为利用多层三维捕获离子晶体进行新一代量子信息处理实验奠定了基础。
量子点中限制的电子和空穴为量子涌现、模拟和计算定义了极好的构建块。硅和锗与标准半导体制造兼容,并且含有具有零核自旋的稳定同位素,因此可作为具有长量子相干性的自旋的极好宿主。在这里,我们展示了硅金属氧化物半导体 (SiMOS)、应变硅 (Si/SiGe) 和应变锗 (Ge/SiGe) 中的量子点阵列。我们使用多层技术进行制造以实现紧密限制的量子点并比较集成过程。虽然 SiMOS 可以从更大的温度预算中受益,而 Ge/SiGe 可以与金属形成欧姆接触,但定义量子点的重叠栅极结构可以基于几乎相同的集成。我们首次在 Ge/SiGe 中实现了每个平台的电荷感应,并展示了功能齐全的线性和二维阵列,其中所有量子点都可以耗尽到最后的电荷状态。在 Si/SiGe 中,我们使用 N + 1 方法调谐五重量子点,以同时达到每个量子点的少数电子状态。我们比较了电容串扰,发现 SiMOS 中的电容串扰最小,这与量子点阵列的调谐相关。我们将这些结果应用于量子技术,并将工业量子位、混合技术、自动调谐和二维量子位阵列确定为四个关键轨迹,当它们结合在一起时,可以实现容错量子计算。
摘要:最近出现了一个有前途的技术平台,通过使用亚波长纳米索子的二维阵列在纳米级构造材料,从而提供了对光的前所未有的控制。这些元信息具有非凡的光学特性,可以在成像,传感,电信和与能量相关的领域中进行多种应用。跨曲面的一个重要优势在于它们通过精确地设计纳米架阵列的几何形状和材料组成来操纵光谱的能力。因此,它们具有有效的太阳能收获和转换的巨大潜力。在这篇综述中,我们根据元信息介绍了太阳能转换设备的当前最新面积。首先,我们概述了太阳能转化中涉及的基本过程,以及对元时间的主要类别的介绍,即等离子体和介电元信息。随后,我们探讨了使用的数值工具来指导元信息的设计,特别关注促进优化光学响应的逆设计方法。为了展示元时间的实际应用,我们介绍了跨各个领域的选定示例,例如光伏,光电化学,光催化,太阳热和光热路线以及辐射冷却。这些例子强调了可以利用跨度额来利用太阳能的方式。关键字:元时间,质膜,介电,太阳能转换,逆设计,光学响应通过量化元信息的光学特性,可以预期在太阳能收集技术中取得重大进步,从而提供新的实用解决方案来支持新兴的可持续社会。
量子计算的最终目标是执行超出任何古典计算机的计算。因此,必须非常难以经典地模拟有用的量子计算机,否则可以将经典计算机用于量子设想的应用程序。完美的量子计算机毫无疑问地很难模拟:所需的经典资源随量子数n或电路的深度D的数量成倍增长。这个困难触发了最新的实验,旨在证明量子设备可能已经执行超出经典计算范围的任务。这些实际量子计算设备受到许多破坏性和不精确来源的损失,这些来源限制了实际上可以达到其理论最大的一部分的纠缠程度。它们的特征是指数衰减的保真度f〜ð1 -ϵ nd,误差率为每次操作,对于具有数十个Qubits的电流设备,每次操作的每次操作小于1%,对于较小的设备而言较小。在这项工作中,我们通过证明可以以一台完美的量子计算机所需的一小部分成本进行模拟,从而为真实量子计算机的计算功能提供新的见解。我们的算法使用矩阵乘积状态来压缩量子波函数的表示,该矩阵产品状态能够非常准确地捕获低至中度纠缠的状态。此压缩引入了有限的错误率ϵ,因此算法紧密模仿了实际量子计算设备的行为。我们的算法的计算时间仅与N和D形成鲜明对比的N和D与精确的模拟算法形成鲜明的呈线性增加。我们使用在一维晶格中连接的Qubit的随机电路进行了模拟来说明我们的算法。我们发现,计算功率中的多项式成本可以降低至最小误差ϵ∞。以下低于ϵ∞需要计算资源,以指数增加ϵ∞ = ϵ。对于二维阵列N¼54QUAT和具有控制Z门的电路,可以在几个小时内在笔记本电脑上获得比最先进设备的错误率。对于更复杂的门(例如交换门),然后进行受控旋转,对于类似的计算时间,错误率增加了因子3。我们的结果表明,尽管量子设备达到了高忠诚度,但实际上仅利用了希尔伯特空间的系统的一小部分ð〜10-8Þ。
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计