果蝇“我还没死”(INDY)是一种跨质膜的柠檬酸转运蛋白,柠檬酸是柠檬酸循环中的关键代谢物。INDY 的部分缺乏会延长寿命,类似于热量限制的效果。在这项工作中,我们使用低温电子显微镜在 2.7 至 3.6 ˚A 的分辨率范围内确定有和没有柠檬酸的情况下以及与著名抑制剂 4,4 9 -二异硫氰基-2,2 9 -二磺酸二苯乙烯 (DIDS) 复合时的 INDY 结构。结合体外获得的功能数据,INDY 结构揭示了 H + /柠檬酸共转运机制,其中芳香族残基 F119 充当单门元件。它们还提供了有关二聚化界面处的蛋白质 - 脂质相互作用如何影响转运蛋白的稳定性和功能,以及 DIDS 如何破坏转运循环的见解。
Ser/Thr 激酶 RAF,特别是 BRAF 亚型是致癌突变的主要靶点,在各种癌症中都发现了许多突变。然而,除 V600E 之外的这些突变如何逃避 RAF 蛋白的调节机制并因此引发其致癌性仍不清楚。方法:在本研究中,我们使用诱变、肽亲和力测定、免疫沉淀、免疫印迹和互补分裂荧光素酶测定以及小鼠异种移植肿瘤模型来研究 RAF 的功能如何由 Cdc37/Hsp90 分子伴侣和 14-3-3 支架协同调节,以及这种调节机制如何被普遍的非 V600 突变逃避。结果:我们发现 Cdc37/Hsp90 分子伴侣与成熟的 BRAF 蛋白结合,与 14-3-3 支架一起促进 BRAF 蛋白从活性开放二聚体转变为非活性封闭单体。大多数非 V600 突变富集在 BRAF 的 Cdc37/Hsp90 结合片段上或周围,这会削弱 CDc37/Hsp90 分子伴侣与 BRAF 的结合,从而使 BRAF 处于有利于二聚化的活性开放构象中。这些具有高二聚体倾向的 BRAF 突变体维持了长时间的 ERK 信号传导,并且在体外和体内被 RAF 二聚体破坏剂 plx8394 有效靶向。相反,CRAF 和 ARAF 以未成熟单体的形式存在,与 Cdc37/Hsp90 分子伴侣高度包装,在 RAS-GTP 与其 N 端结合以及 14-3-3 支架与其 C 端结合的驱动下,二聚化后释放。成熟的 CRAF 和 ARAF 二聚体也像非 V600 BRAF 突变体一样维持了长时间的 ERK 信号传导,这是由于缺乏 C 端 Cdc37/Hsp90 结合片段。结论:Cdc37/Hsp90 分子伴侣和 14-3-3 支架协同促进 RAF 蛋白从开放活性二聚体转变为封闭无活性单体。非 V600 突变会破坏这种调节机制,并将 RAF 困在二聚体中,而二聚体可能成为 RAF 二聚体破坏剂的目标。
在横向磁场 (TF) 存在下,二聚化自旋 1/2 XX 蜂窝模型的基态相图是已知的。在没有磁场的情况下,已经鉴定出两个量子相,即 Néel 相和二聚相。此外,通过施加磁场还会出现倾斜 Néel 相和顺磁 (PM) 相。在本文中,我们利用两种强大的数值精确技术,Lanczos 精确对角化和密度矩阵重正化群 (DMRG) 方法,通过关注最近邻自旋之间的量子关联、并发和量子不和谐 (QD) 来研究该模型。我们表明,量子关联可以捕捉基态相图整个范围内量子临界点的位置,这与以前的结果一致。虽然并发和 QD 是短程的,但它们对长程临界关联具有重要意义。此外,我们还讨论了从饱和场周围的纠缠场开始的“磁纠缠”行为。
•研究了通过竞争性二聚化网络执行的计算(Cell 2024)。•开发了简单的减少阶模型,用于预测2型糖尿病中的血糖(混乱2023)。•开发了神经系统重症监护病患者和1型糖尿病的重症患者葡萄糖预测的建模和预测方法(《生物学信息学杂志》 2023年)。•将杂种动力学建模框架应用于学习碳水化合物吸收率(Health 2022的神经时间赛)。•设计基于物理的数据驱动的混合模型框架,用于预测动态系统;在离散时间和连续时间(AMS 2022的通信)中,Markovian和非Markovian模型不足。•在集合卡尔曼过滤器中实现了新的状态空间约束,该滤波器通过二次优化形成了约束状态更新(2019年反问题)。
摘要:核苷酸结合结构域和富含亮氨酸的重复(NLR)蛋白可以参与25种复杂的相互作用,以检测病原体并通过下游辅助助手NLR执行强大的免疫反应。然而,上游传感器NLR激活辅助NLR的生化机制仍然鲜为人知。在这里,我们表明,盘绕的螺旋辅助辅助辅助NLR NRC2在体内积聚,作为一种同型二聚体,其在其上游病毒抗病蛋白RX激活后将其转化为高级低聚物。NRC2在其静止30个状态下的冷冻EM结构揭示了介导同二聚体形成的分子间相互作用。这些二聚化接口在寄生虫NRC蛋白之间有所不同,以使关键网络节点隔离并实现冗余免疫途径。我们的结果扩大了NLR激活指向从同二聚体到高阶寡聚抗性体的过渡的分子机制。
简单的摘要:乳腺肿瘤在猫中很常见,表现出具有高肿瘤复发的侵略性行为。因此,紧急的新型和有效的治疗方案是紧迫的。单克隆抗体(mAbs; adc)广泛用于人类乳腺癌治疗,抑制HER2二聚化并导致细胞凋亡。此外,与酪氨酸激酶抑制剂(TKI)的药物组合在患者的治疗方案中很有价值。在这项研究中,测试了两个mAb和一个ADC,以及mabs和mAbs和lapatinib(TKI)之间的合并方案,以解决是否可以将药物用作猫乳腺肿瘤中的新治疗选择。在猫细胞系中,所有化合物和综合处理均显示出有价值的抗增殖作用,以及通过凋亡的保守细胞死亡机制,其中在HER2的细胞外结构域中发现的突变表明没有免疫疗法抗性。
生长因子(GFS)是多肽配体,这些配体调节各种细胞活性,例如增殖,迁移和分化。在细胞膜上GFS与受体酪氨酸激酶(RTK)的结合可诱导RTK的二聚化和随后的磷酸化,并启动细胞内激酶的磷酸化级联反应。1有趣的是,RTK下游激酶的激活动力学在确定细胞功能和命运方面起着重要作用(图1)。2例如,在大鼠PC12细胞中,表皮生长因子(EGF)和神经生长因子(NGF)都通过激活其同源受体激活RAS-RAF-MEKERK途径,但是激酶激活的动力学以及所得的细胞灭绝表现出独特的模式。3 EGF导致ERK的瞬时激活,导致细胞增殖,而NGF导致ERK的持续激活,从而导致细胞分化。迄今为止,已经关注了启动GF信号动力学的机制,从而调节细胞功能。因此,高度寻求能够控制具有精确时间分辨率的RTK活性的方法,以研究受体 -
单克隆抗体的抗原特异性和长血清半衰期使其成为现代治疗学的重要组成部分。这些特性已被用于多种合成形式,如抗体 - 药物偶联物、双特异性抗体或 Fc 融合蛋白,以产生新型生物药物模式。从历史上看,这些新疗法是通过化学或遗传方法共价连接多个分子部分而产生的。这种不同成分的不可逆融合意味着分子的功能是静态的,由结构决定。在这里,我们报告了一种使用化学诱导二聚化结构域可切换组装功能性抗体复合物的技术的开发。这种方法通过调节小分子的剂量来实现抗体在体内的预期功能。我们证明了这种可切换的组装在体内具有三种与治疗相关的功能,包括将放射性核素偶联抗体定位到抗原阳性肿瘤、延长细胞因子的半衰期、以及激活双特异性T细胞结合抗体。
通过化学诱导二聚化 (CID) 进行基因调控对生物医学研究很有用。然而,CID 工具的数量、类型、多功能性和体内应用有限。在这里,我们展示了针对嵌合体的可扩展 CID (PROTAC-CID) 平台的蛋白水解,通过系统地设计可用的 PROTAC 系统进行可诱导的基因调控和基因编辑。此外,我们开发了正交 PROTAC-CID,可以在梯度水平上微调基因表达或使用不同的逻辑门控操作多路复用生物信号。将 PROTAC-CID 平台与基因电路结合,我们实现了 DNA 重组酶、碱基编辑器和主要编辑器的数字诱导表达,用于瞬时基因组操作。最后,我们将紧凑的 PROTAC-CID 系统打包到腺相关病毒载体中,用于体内诱导和可逆的基因激活。这项工作提供了一个多功能的分子工具箱,扩大了人类细胞和小鼠中化学诱导基因调控的范围。
成纤维细胞生长因子受体 ( FGFR ) 是四个同源、高度保守的跨膜酪氨酸激酶受体 ( FGFR 1-4) 家族 (1)。虽然 FGFR 广泛分布于全身,但它们在非恶性细胞中不具有组成活性。FGFR 与成纤维细胞生长因子 (FGF) 配体结合,导致 FGFR 二聚化,随后酪氨酸残基发生磷酸化,从而引发一系列细胞内事件,激活主要信号转导通路,包括 RAS/MAPK、PI3K/AKT 和 JAK/STAT 通路 (2,3)。FGFR 信号转导在各种生物过程中发挥作用,包括细胞增殖、迁移、抗凋亡、血管生成、伤口愈合和组织再生 (4,5)。 FGFR 信号的组成性激活会导致增殖和血管生成失调、产生耐药性和免疫逃避 (5-8)。据报道,FGFR 异常(包括基因扩增、染色体易位和/或突变)见于多种癌症,包括乳腺癌 (9)、尿路上皮癌 (10)、胃癌 (11)、肺癌 (8) 和前列腺癌以及多发性骨髓瘤 (12)。