密钥交换协议允许事先互不相识的双方共享一个公共加密密钥,以便随后交换对称加密消息。当前的密钥交换协议基于公钥加密。因此,它们的安全性基于知道公钥、找到私钥或用公钥加密的密钥的难度。随着量子计算机的出现,当前的非对称算法将不再提供这样的保证 [1]。量子密钥分发协议(量子密钥分发,QKD)的安全性基于量子物理的特性,特别是不可克隆定理 [2];该定理指出,不可能完美地克隆粒子(量子比特)的量子态。如果攻击者试图读取两个参与者交换的量子比特(通常是光子的偏振态),那么她必然会修改量子态,因此可以即时检测到。然而,QKD 的局限性之一仍然是双方可以交换的最大地理距离,目前为几百公里 [3]。ETSI 提出了 QKD 网络的协议标准 [4]。在这里,我们建议使用 ProVerif 工具对其进行正式验证。
摘要。作为光学处理器,一种衍射深神经网络(D 2 NN)利用通过机器学习设计的工程衍射表面来执行全光信息处理,并以薄光学层以光的速度完成其任务。具有足够的自由度,D 2 NN可以使用空间相干的光执行任意复合物值线性变换。同样,D 2 NN还可以使用空间不连贯的照明执行任意线性强度转换。但是,在空间不连贯的光线下,这些转换是非负的,在视图的输入场上作用于衍射限量的光学强度模式。在这里,我们将空间不连贯的d 2 NN的使用扩展到复杂值的信息处理,用于使用空间不相互分的光执行任意复合物值线性转换。通过模拟,我们表明,随着优化的衍射特征的数量增加超出了由输入和输出空间带宽产品乘法所决定的阈值,因此在空间上不相互不相互的衍射视觉处理器可以近似于使用Incoherent Incoherent Illumentiner的所有复杂的复杂价值线性转换,并用于全部流动图像仿真。这些发现对于使用各种形式的基于表面的光学处理器的自然光的信息在自然光下的全光处理很重要。
在研究实验室和业余实验室中都可以找到构建不同系统原型的耐心和渴望。这种建设不会停止进步,有时是由于需要,有时是由于改进(Golnabi & Asadpour,2007;Li 等,2019;Khechekhouche 等,2019)。雷诺数的历史写在流体力学年鉴中(Rott,1990)。一项研究表明,流体粒子在管道中以层流的形式平行层行进,互不干扰。管道中流体的速度分布并不均匀。流体在外围场被管道压力破坏,流动速度比管道轴线慢。压力的降低与流体的平均速度成正比。流体的多层起泡并相互交换能量,就形成了湍流。非平稳运动是所产生流动类型的特征。此外,但仅在管道的外围区域,存在层流边界层。在大部分管道截面上,速度分布几乎恒定。压降等于层流压降(Fontane,2005;Brunetière,2010)。当雷诺数大于 3000 时,管道内的流动状态为湍流;虚构因素取决于雷诺数,也取决于相对粗糙度,当然还有其他因素。我们的手稿显示,雷诺垂直测试台(H 215)无法让大量学生正确地看到体验,这给教育实验室带来了真正的问题,另一方面,实验室设计的水平测试台可以让相同数量的学生清楚地看到实验的所有阶段。
量子信息具有测量本质上是一个破坏性过程的特性。这一特征在互补原理中表现得最为明显,该原理指出互不相容的可观测量不能同时测量。Broadbent 和 Islam (TCC 2020) 最近的研究基于量子力学的这一方面,实现了一种称为认证删除的密码概念。虽然这个了不起的概念使经典验证者能够确信 (私钥) 量子密文已被不受信任的一方删除,但它并没有提供额外的功能层。在这项工作中,我们用完全同态加密 (FHE) 增强了删除证明范式。我们构建了第一个具有认证删除的完全同态加密方案——这是一种交互式协议,它使不受信任的量子服务器能够对加密数据进行计算,并且如果客户端要求,可以同时向客户端证明数据删除。我们的方案具有理想的特性,即删除证书的验证是公开的;这意味着任何人都可以验证删除已经发生。我们的主要技术要素是一个交互式协议,通过该协议,量子证明者可以说服经典验证者,以量子态形式出现的带错误学习 (LWE) 分布中的样本已被删除。作为我们协议的一个应用,我们构建了一个具有认证删除的 Dual-Regev 公钥加密方案,然后将其扩展到相同类型的 (分级) FHE 方案。我们引入了高斯崩溃哈希函数的概念 - Unruh (Eurocrypt 2016) 定义的崩溃哈希函数的一个特例 - 并在假设 Ajtai 哈希函数在存在泄漏的情况下满足某种强高斯崩溃性质的情况下证明了我们方案的安全性。