原子在受到各种形式的能量(如热或电)的作用时会发光。然而,任何给定元素的原子在气态下都只发射特定频率的光。因此,每种元素在通电时都会发出自己独特的光芒。钠原子发出明亮的黄光,这使得它们可以用作路灯的光源,因为我们的眼睛对黄光非常敏感。再举一个例子,氖原子发出明亮的红橙色光,这使得它们可以用作霓虹灯的光源。当我们通过分光镜观察发光原子发出的光时,我们会看到光由许多离散(彼此分离)的频率组成,而不是像图 4.17 中所示的连续光谱。给定元素形成的频率模式(其中一些如图 4.18 所示)称为该元素的原子光谱。原子光谱是元素的指纹。您可以通过分光镜分析光并寻找特征模式来识别光源中的元素。
我的演讲的书面版本是对数十年来对电子互动的研究的个人反思,最终在千年之交时实时控制和观察。电子和光在1980年代在布达佩斯举行的Quyrgy Marx上的量子力学和KárolySimonyi上的讲座时引起了我的注意。我的导师阿诺德·施密特(Arnold Schmidt)巩固了这一兴趣,并在1990年代在维也纳(Vienna)加深了保罗·库克姆(Paul Corkum)。他们最深刻地影响了我的道路。站在科学家的肩膀上,包括许多诺贝尔奖获得者,他们在探索亚原子运动的道路时为我们对电子和光线的理解做出了开创性的贡献。最终利用他们解决巨大的挑战。对人类的利益。
对于广大读者来说,我简要回顾一下这段“量子”之旅可能会有所帮助,因为大众媒体经常给人一种感觉,认为 QST 是突然发生的。我必须消除这种印象或信念。量子力学或量子物理学诞生于一百多年前,目的是解释某些似乎是“异常”的现象,根据当时已经获得非常强大结构的古典物理学定律和原理。从马克斯·普朗克的假设开始,量子物理学背后的基本理论原理大约在 20 世纪前 25 年建立起来,薛定谔、海森堡、马克斯·玻恩、尼尔斯·玻尔、狄拉克、冯·诺依曼、爱因斯坦、我们自己的 S.N. 做出了里程碑式的贡献。玻色、泡利、费米和其他几个人。结果表明,自然界在分子、原子和亚原子尺度上按照量子力学定律和原理运行;在日常宏观尺度上则按照经典力学运行。在原子和亚原子尺度上,物质的行为方式与我们日常经验完全相反,但量子力学的预测已被非常仔细和极其精确的实验证明是正确的。所有这些的顶峰就是粒子物理学的标准模型,它似乎解释了我们迄今为止在原子或亚原子领域观察到的一切。通过大量物理学家的持续和杰出贡献,还确定了单个原子和分子在聚集形成宏观系统(如我们熟悉的各种材料)时显然会失去其“个体量子特征”。
热眠器很难,并且具有非常紧密的拟合,扩展的亚原子结构。在成型过程中的缓解继续,此后还没有,此时可以想象可以通过变暖来塑造材料。可能会通过加工进行进一步的成型。热固性用来制作光开关。
叠加 - 量子系统在测量之前能够同时处于多种状态的能力。 纠缠 - 这是一种现象,它解释了两个亚原子粒子如何不考虑距离而相互连接,以至于一个粒子的变化水平会反映在另一个粒子上。 干涉 - 亚原子粒子状态的波状叠加,会影响测量时这些粒子状态的概率。虽然纠缠是两个粒子之间的现象,但干涉是许多粒子相互环绕的结果。 量子比特 - 它是量子计算中的基本信息单位,在量子计算中扮演的角色与比特在传统计算中扮演的角色类似,但它们的行为非常不同。经典比特是二进制的,只能保存 0 或 1 的位置,但量子比特可以保存所有可能状态的叠加。可以使用多种方法将信号发送到量子比特,包括微波、激光和电压。 量子计算机组件 - 量子计算机有三个主要部分