抽象的气候变化有望大大改变和改变植物生长和分布的生态条件,尤其是在地中海盆地,被认为是世界上全球变暖的最脆弱区之一。在本章中,我们研究了橄榄树的生物地理学,橄榄树是地中海盆地的象征性物种,由两个野生亚种在摩洛哥代表:Olea Europaea uspep。eUropaea var。Sylvestris,所有橄榄品种的祖先,在该国广泛分布,Olea e。亚种。Maroccana,在受限的西南地区流行。我们在未来变暖的背景下假设O. e。亚种。e。var。sylvestris分配区域有望,而O. e。亚种。Maroccana,预测其分布的改变,严重增加了灭绝的风险。为了评估摩洛哥两种野生橄榄种类的当前和未来的潜在地理分布,进行了基于物种分布的模型,以理解物种分布与气候因素之间的关系,基于现场数据和19个气候变量。使用了两个代表性浓度途径RCP4.5和RCP8.5,用于预测2050年和2070年两个野生橄榄亚种的未来分布。为避免多重共线性,从自变量列表中删除了高度相关的气候变量(r> 0.9,皮尔逊相关系数)。进行了折刀测试,以评估气候变量对预测建模的相关性。两种物种当前分布的最大熵模型都提供了令人满意的结果,而OLEA Europaea亚种的曲线面积高于0.980(±0.001)。eUropaea var。sylvestris,Olea Europaea亚种等于0.997(±0.001)。Maroccana。 折刀测试表明,降水和温度变量在摩洛哥的野生橄榄生物地理动力学中起重要性作用。 研究结果证实了我们对O. e的扩展的假设。亚种。 e。 var。 sylvestris合适的区域和OLEA e的威胁性方面。亚种。 在气候变化方案下的玛卡卡纳州。 本研究中使用的方法有望预测野生橄榄物种的潜在分布,并且可以成为支持保护和恢复计划的有效工具。Maroccana。折刀测试表明,降水和温度变量在摩洛哥的野生橄榄生物地理动力学中起重要性作用。研究结果证实了我们对O. e的扩展的假设。亚种。e。 var。sylvestris合适的区域和OLEA e的威胁性方面。亚种。在气候变化方案下的玛卡卡纳州。本研究中使用的方法有望预测野生橄榄物种的潜在分布,并且可以成为支持保护和恢复计划的有效工具。
来自同一物种的微生物菌株由于其不同的基因含量而具有不同的功能特征。作为最高分辨率,菌株主要是特定于宿主的,因此掩盖了公正的关联,并阻碍了演绎研究。在这里,我们以公正的,独立的方式全面地以一致宣布的亚种分辨率定义了人类肠道微生物群,并证明我们可以在全球范围内概括到全球范围内的不同种群,同时保持特异性并提高培养基可重复性。我们开发了Panhashome,这是一种基于草图的方法,用于快速亚种量化和鉴定驱动种子内变化的基因,并表明亚种在物种水平上携带不可检测的信息。通过大肠癌荟萃分析(CRC)数据集,我们确定了与疾病相关的亚种,其兄弟姐妹亚种没有。基于亚种的机器学习CRC诊断算法通过利用唯一的亚种级信息来优于物种水平的方法。该亚种目录允许鉴定基因,这些基因将亚种之间的功能差异作为机械理解微生物组 - 表型相互作用的基本步骤。
到2050年,预计全球97亿人口将增加粮食需求,特别是对于主食作物。气候变化,随着温度的极大波动,严重影响了在热带和亚热带地区生长的冷敏感亚洲大米(Oryza sativa L.)。因此,了解对冷应激具有独特耐受性的两个亚洲水稻亚种的响应机制对于提高作物的冷耐受而言很重要。因此,这项研究检验了我们的假设,以解决Japonica如何比Indica更好地忍受冷暴露:(1)Japonica有选择地调整抗氧化活性以相反的活性氧(ROS),而Indica迅速提高了抗氧化活性; (2)Japonica增加了抗氧化剂,以防止长时间暴露后的损害,而Indica未能这样做; (3)japonica减慢了吸水,以维持寒冷期间最少的光合作用,而Indica的摄取机制则被损害; (4)泛素化蛋白Osubc7的过表达可提高冷敏感剂的冷耐受性。要检验这些假设,本研究研究了两种不同冷处理下两种亚种采用的酶促抗氧化活性和水吸收策略。结果揭示了管理ROS和抗氧化活性的独特策略,Japonica表现出波动的抗氧化活性,以潜在地激活防御途径,而Indica表现出快速但可能过度且昂贵的ROS清除反应。此外,这项研究探讨了冷候选基因OSUBC7在冷应激反应和生产力中的作用。此外,观察到对比的水吸收模式,与japonica中度下降相比,Indica饰品在寒冷下显着降低,表明相对结果。在冷敏感康复中的OSUBC7过表达通过提高生长速率,糖代谢和叶绿素含量来增强植物对冷应激的韧性,最终有助于更有效的恢复和更高的生存能力。此外,Osubc7显示出潜在的开花和产量参与,这表明在生产力中起着有希望的作用。总而言之,这项工作证明了亚洲水稻亚种对冷压力的复杂反应机制,强调了ROS感知和管理的重要性,吸水策略以及改善冷应激耐受性的遗传因素。这些发现提供了对这两种亚种的自适应策略的见解,并有助于制定有效的策略,以提高波动环境中的作物冷耐受性。
1化学与生物化学系,加利福尼亚州圣塔芭芭拉分校,圣塔芭芭拉分校,美国加利福尼亚州93105。2西北大学化学系,埃文斯顿,60208,伊利诺伊州,美国。3马萨诸塞州阿默斯特大学阿默斯特大学生物学系和应用生命科学研究所,美国马萨诸塞州01003。4伊萨卡康奈尔大学系统工程系,美国纽约州14853,美国。5分子,蜂窝和发育生物学系,加利福尼亚州圣塔芭芭拉分校,圣塔芭芭拉,93105,美国加利福尼亚州。6加利福尼亚大学圣塔芭芭拉分校的心理与脑科学系,美国加利福尼亚州93105,美国加利福尼亚州。 7化学工程系,加利福尼亚大学圣塔芭芭拉分校,圣塔芭芭拉,93105,美国加利福尼亚州。 8 ACERT(国家生物医学高级技术中心),化学与化学生物学系,康奈尔大学,伊萨卡,14853,纽约,美国。 9微生物学系,免疫学和病理学系,科罗拉多州立大学,柯林斯堡,80521,美国公司。6加利福尼亚大学圣塔芭芭拉分校的心理与脑科学系,美国加利福尼亚州93105,美国加利福尼亚州。7化学工程系,加利福尼亚大学圣塔芭芭拉分校,圣塔芭芭拉,93105,美国加利福尼亚州。 8 ACERT(国家生物医学高级技术中心),化学与化学生物学系,康奈尔大学,伊萨卡,14853,纽约,美国。 9微生物学系,免疫学和病理学系,科罗拉多州立大学,柯林斯堡,80521,美国公司。7化学工程系,加利福尼亚大学圣塔芭芭拉分校,圣塔芭芭拉,93105,美国加利福尼亚州。8 ACERT(国家生物医学高级技术中心),化学与化学生物学系,康奈尔大学,伊萨卡,14853,纽约,美国。 9微生物学系,免疫学和病理学系,科罗拉多州立大学,柯林斯堡,80521,美国公司。8 ACERT(国家生物医学高级技术中心),化学与化学生物学系,康奈尔大学,伊萨卡,14853,纽约,美国。9微生物学系,免疫学和病理学系,科罗拉多州立大学,柯林斯堡,80521,美国公司。9微生物学系,免疫学和病理学系,科罗拉多州立大学,柯林斯堡,80521,美国公司。
摘要:基因表达模式的变化会导致形态特征的变化。这种现象在最近的进化事件(例如农作物驯化和对环境压力的反应)中尤为明显,在这种情况下,表达水平的改变会产生驯养的综合症和适应性表型。大米(Oryza sativa L.)是世界上最关键的谷物作物之一,包括两个在形态上不同的亚种,Indica和Japonica。为了研究这两个水稻亚种之间的形态差异,本研究在相同的培养条件下,总共种植了Indica和Japonica的315个Landrace个体。在这项研究中测得的16个定量性状中,有12个在亚种之间表现出显着差异。为了在整个基因组序列水平上确定Indica和Japonica之间的遗传差异,我们使用包含95个水稻Landrace配件的重新方便的数据集构建了系统发育树。样品形成了两个主要组,它们整齐地对应于两个亚种Indica和Japonica。此外,基于跨五个不同组织的有效表达基因(EEG)的表达量,将12个代表性样本分为两个与两个亚种对齐的主要进化枝。这些结果表明,全基因组表达水平的差异在非压力条件下进行稳定选择,表达水平的进化趋势反映了序列变化水平。这项研究进一步支持了全基因组表达调节变化在两个水稻亚种的差异中的关键作用。
1胃肠病学系,Vila Nova de Gaia/Espinho医院中心,4434-502 Vila Nova de Gaia,葡萄牙; mmestevinho@gmail.com 2生物医学系,波尔图大学医学院药理学和治疗学部门,葡萄牙Porto 4050-313; mafaldasap@gmail.com(M.S.); fm@med.up.pt(F.M.)); mduuro@ufp.edu.pt (m.d.)
摘要。生成统计模型在心脏解剖和功能的建模中具有多种应用,包括疾病诊断和预测,个性化形状分析以及用于电生理和机械计算机模拟的人群同类群体的产生。在这项工作中,我们提出了一种新的几何深度学习方法,基于各种自动编码器(VAE)框架的框架,这些框架准确地编码,重建和合成了双脑室解剖结构的3D表面模型。我们的非线性方法可与记忆良好的点云直接起作用,并且能够在多级设置中同时处理心脏解剖结构的多个子结构。此外,我们将亚群特定的特征引入了其他条件输入,以允许产生新的人解剖学。我们的方法在来自英国生物银行研究的数据集上达到了高重建质量,在基础图像像素分辨率下方的重建和金标准点云之间的平均倒角距离,用于所有解剖学子结构以及条件输入的组合。我们研究了我们方法的生成能力,并表明它能够通过既定的临床先例,通过体积测量来合成逼真的心脏的虚拟弹出术。我们还分析了自动编码器潜在空间中变异的影响,并在产生的解剖体上发现心脏形状和大小的可解释变化。
摘要:Tularemia是一种严重的传染病,由革兰氏阴性细菌francisella tolarensis引起。F. tularensis目前分为三个亚种,即Holarctica,Tularensis和MediaSiatica,它们的毒力和地理分布有所不同。亚种mediaSiatica的研究最少,因为其对人类的毒力非常低,地理分布有限。它是在中亚人口稀少的地区发现的。自2011年以来,一个新的亚种。在俄罗斯(俄罗斯)鉴定出媒介谱系。在2021年,我们隔离了一个亚种。Krasnoyarsk领土中的MediaSiatica菌株。尽管其地理起源,距离阿尔泰(Altai)东500公里,但这种菌株属于阿尔泰(Altai)谱系,并且对以前的知识的遗传多样性几乎没有。
1 农业食品、动物和环境科学研究所—ICA3,奥希金斯大学,圣费尔南多 3070000,智利; carlos.maldonado@uoh.cl (CM); rodrigo.contreras@uoh.cl (RIC-S.) 2 塔尔卡大学生物科学研究所,塔尔卡 3460000,智利 3 康塞普西翁大学林业科学学院景观生态学实验室,康塞普西翁 4030000,智利; cristian.echeverria@udec.cl 4 智利大学林业科学与自然保护学院,拉平塔纳,圣地亚哥 8820000,智利; ricardo.baettig@uchile.cl 5 生物多样性和全球变化研究组(GIBCG),比奥比奥大学基础科学系,奇廉 3780000,智利; crtorres@ubiobio.cl 6 伊朗沙鲁德理工大学农业学院,沙鲁德 3619995161; heidarip@shahroodut.ac.ir 7 塔尔卡大学农业科学学院植物育种和表型中心,塔尔卡 3460000,智利; globosp@utalca.cl 8 植物育种实验室、农业科学与技术中心、北里约热内卢达西里贝罗州立大学、Campos dos Goytacazes 28013-602,巴西; amaraljr@uenf.br * 通信地址:fmora@utalca.cl