容量 (Eurovent) 制冷 kW 247.0 275.0 301.5 327.0 标称输入 (Eurovent) 制冷 kW 79.2 87.3 94.2 103.8 容量级数 % 12.5 - 100 EER 3.12 3.15 3.2 3.15 ESEER 3.99 3.89 4.01 4.04 尺寸 高 x 宽 x 深 mm 2,340x2,235x3,140 2,340x2,235x4,040 重量 机器重量 kg 2,866 3,186 3,286 3,366 运行重量 kg 2,959 3,299 3,399 3,530 水热交换器蒸发器类型管壳式水量 l 93 113 164 水流量 最小 l/min 373 489 495 537 标称 l/min 708 788 864 937 最大 l/min 1,180 1,546 1,565 1,697 标称水压降 冷却 kPa 36.0 26.0 30.5 空气热交换器 类型 槽管和 ALU 涂层百叶窗翅片 风扇 标称空气流量 m³/min 1,338 1,836 1,782 速度 rpm 900 压缩机 类型 半封闭单螺杆压缩机 型号 数量 2 声功率 冷却 dBA 96.8 97.2 操作范围 水侧最小~最大 °C -8~15 空气侧最小~最大 °CDB -18 (OPLA)~48 制冷剂回路 制冷剂类型 R-134a制冷剂充注量 kg 80 100 110 电路数 2 电源 3~/400V/50Hz 管道连接 蒸发器进水口/出水口 4" 蒸发器排水口 1/2" 气体
A c 横截面积,[ m 2 ] A s , A h 总传热面积,[ m 2 ] β 表面密度,[ m 2 /m 3 ] 或整体压力梯度,[ Pa/m ] C p 恒压比热,[ J/ ( kgK )] Co 库仑数 d h 水力直径,[ m ] δ 翅片厚度,[ m ] ϵ 热交换器效率或湍流耗散,[ s ] 或翅片间距比 f c 核心摩擦系数 f 扇形 扇形摩擦系数 f 频率,[ Hz ] 或 Forschheimer 摩擦系数 G 质量流速,˙ m/A c , [ kg/ ( m 2 s )] γ 波纹间距比 h 对流膜系数 [ W/ ( m 2 K )] h f 压力损失,[ m ] η 0 , η f二次传热表面的有效性 j 科尔本系数 K c 入口损失系数 K e 出口损失系数 k 湍流动能,[ J/kg ] 或材料的热导率,[ W/ ( mK )] L , l 长度或翅片长度,[ m ] LMTD 对数平均温差,[ K ] M 马赫数 ˙ m 质量流量,[ kg/s ] µ 动态粘度,[ Pa · s ] N st 斯坦顿数 Nu 努塞尔特数 ν 运动粘度,[ m 2 /s ] P 周长,[ m ] 或流体压力,[ Pa ] Pr 普朗特数 Re 雷诺数 ρ 密度,[ kg/m 3 ] Q 或 ˙ Q 传递的热量,[ W ] Q 平衡 热交换器流之间的热平衡 Q 热 热交换器热侧发出的热量,[ W ] Q 冷热交换器的冷侧,[ W ] φ 流动面积与面面积之比或标准偏差 T 温度,[ K ] U 总传热系数 [ W/ ( m 2 K
在结肠中肠上皮细胞的腔膜中表达了阴离子交换器蛋白SLC26A3(在腺瘤中下调),在那里它促进了Cl-和草酸盐的吸收。我们先前鉴定出从SLC26A3细胞质表面起作用的SLC26A3抑制剂的4,8-二甲基氨基菜蛋白类,并在小鼠的便秘模型和高氧化尿症模型中证明了它们的功效。在此,对主要筛选的50,000种新化合物和1740种活性化合物的化学类似物筛选产生了五种新型的SLC26A3选择性抑制剂(1,3-二氧二氨基氨基氨基酰胺; n- n-; n-(5-磺胺1,3,3,4- thiAdiAdiAdiAzol-2- yl-yl-yl-yl-yl-yl-yl-yl-yl-pir); 3-羧基-2-苯基苯并呋喃和苯唑嗪-4-一个),IC 50降至100 nm。动力学冲洗和作用研究发作揭示了噻唑洛 - 吡啶二肽-5-one和3-羧基-2-苯基苯甲酰苯甲氟烷抑制剂的细胞外作用部位。分子对接计算显示这些抑制剂的假定结合位点。在小鼠的洛陶化胺模型中,口服的7-(2-氯 - 苯甲基甲基)-3-苯基噻唑洛洛[3,2-A]吡啶蛋白-5-酮(3A)显着增加了粪便的体重,颗粒的数量和水含量。SLC26A3具有细胞外部作用部位的抑制剂提供了可能在口服后产生最小的全身性暴露的非吸收性,发光作用抑制剂的可能性。我们的发现还表明,可以鉴定出具有细胞外作用部位的相关SLC26阴离子转运蛋白的抑制剂,以用于对选定上皮离子运输过程的药理调节。
现在已广泛认识到,Ca2+代表了负责调节各种细胞过程(例如增殖,分化,迁移和死亡)的重要且普遍的Messenger(1)。此外,已经将钙信号畸变确定为有助于肿瘤发展和进展的参数之一。虽然多运动泛滥的研究已经通过强调多个致癌驱动因素和癌症标志来确定并提高了我们对癌症分子生物学的理解(2,3),但了解如何在肿瘤细胞中调节钙浓度仍然是一个有趣的挑战。实际上,研究表明,一方面,细胞内Ca2+水平的失调与肿瘤的启动和进展有关,另一方面,Ca2+信号传导通过增殖,凋亡,凋亡,和免疫感染来调节肿瘤微环境(4)。这些多重作用使得无法精确地确定钙信号的功能障碍是肿瘤的原因还是其他致癌性变化的结果。因此,需要对CA2+泵,Ca2+依赖性激酶,交换器和通道(包括电压门控,CRAC,ORAI,ORAI,stim,MUC和TRP)进行进一步的研究,以抑制肿瘤的发展并增强抗癌免疫力。同意,Sala等。证明了由Ether A-Gò-Gò-Gò-与相关基因1(ERG1)的影响选择和淋巴细胞的分化途径介导的Ca2+水平的调节。迄今为止,几个发现强调了受通道调节的胞质Ca2+信号的作用,在刺激CD8+淋巴细胞和天然杀伤细胞的增殖和成熟中(5),在促进免疫细胞迁移和趋化性(6)中的作用(5),以及在促进免疫杀伤和物质杀伤(7)中的作用(6)。尤其是作者强调了ERG1活性在B和T细胞受体激活过程中实现Ca2+插入所必需的足够的电化学梯度的重要性。失调会导致CA2+信号的改变,该信号允许错误选择增殖的肿瘤淋巴样克隆。与这些结果一致,已证明在白血病中发现了ERG1的异常表达,并且与化学抗性和较差的预后有关(8)。Yang等人也强调了Ca2+水平对T效应淋巴细胞存活的重要性。谁描述了Ca2+进口到线粒体的基本作用,由
电源 V/ph/Hz 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 400/3+N/50 400/3/50 400/3/50 400/3/50 性能 仅制冷(毛值) 制冷能力 (1) kW 43,9 52,9 63,1 72,1 83,8 101 120 129 总输入功率 (1) kW 15,7 18,8 21,4 25,0 29,2 35,2 41,9 46,8 EER (1) kW/kW 2,80 2,81 2,95 2,88 2,87 2,87 2,86 2,76 仅制冷 (EN14511 值) 制冷能力 (1)(2) kW 43,6 52,6 62,7 71,7 83,4 100 119 129 EER (1)(2) kW/kW 2,73 2,75 2,88 2,82 2,82 2,82 2,80 2,72 制冷能效等级 C C C C C C C C 能源效率 制冷季节效率 (REG.EU 2016/2281) 环境制冷 Prated,c (10) kW 43,6 52,6 62,7 71,7 83,4 100 119 129 SEER (10)(11) 4,15 4,11 4,13 4,18 4,23 4,36 4,32 4,30 性能ɳs (10)(12) % 163 161 162 164 166 171 170 169 交换器热交换器制冷用户侧水流量 (1) l/s 2,10 2,53 3,02 3,45 4,01 4,82 5,73 6,18 压降 (1) kPa 37,2 41,2 42,3 39,4 35,0 36,2 42,9 38,9 制冷剂回路压缩机数量。编号 1 2 2 2 2 2 2 2 编号回路编号 1 1 1 1 1 1 1 1 制冷剂充注量 kg 7,00 7,20 8,90 9,40 9,50 12,5 12,9 13,5 噪音等级 声压 (5) dB(A) 51 52 53 53 54 55 57 57 制冷时声功率等级 (6)(7) dB(A) 83 84 85 85 86 87 89 89 尺寸和重量 长度 (9) mm 2000 2000 2625 2625 2625 3250 3250 3250 宽度 (9) mm 1350 1350 1350 1350 1350 1350 1350 1350 高度(9)mm 2070 2070 2070 2070 2070 2170 2170 2170 工作重量(9)kg 600 660 750 780 810 1060 1070 1080
设备,液化天然气/气体加工压力容器和重型柱 - 热传输设备(HTE)PBU专门针对熔融盐反应堆系统,氨和尿素交换器,高压螺丝插头插头热交换器,甲醇转换器,丙烯丙烯(PO),丙烯(PO)反应堆,乙酸含量植物(VAM)反应器(VAM)反应器(VAM)零件(VAM)零件(VAM)零件(VAM)零件(VAM),锅盘(VAM)零售店(Vam) PBU专门从事反应堆和氨转化篮的专有内部质量,用于多硅植物的化学蒸气沉积(CVD)反应器,这些反应器是使用不锈钢,双层/超级双层不锈钢,Inconel,Inconel,Monel,Monel,Hastelloy,Titanium,Titanium,Titanium,Titanium,piTanium,pik> à The Modification, Revamp & Upgrade (MRU) PBU offers value-added end-to-end solutions for FCC (Fluid Catalytic Cracking) revamps, Crude Distillation Unit/ Vacuum Distillation Unit revamps, Multi-Shutdown Facility revamps, Urea Reactor Life extension, Coke Drum repairs, Heat Exchanger revamp, Urea energy-saving projects, debottlenecking/capacity加强石油和天然气单元和工艺工业的紧急维修 - 核PBU专门为核电厂中的蒸汽供应系统提供关键设备。 它制造了核岛的关键组成部分,例如蒸汽发生器,末端盾牌,压力箱,安全热交换器,反应堆标头组件,卡兰德里亚,末端配件等。 à特殊制造单元(SFU)制造了关键的钛管阀,气化厂的复杂内部,循环反应堆,初级淬火式交换机(PQE)和石油化学部门的滤清器à The Modification, Revamp & Upgrade (MRU) PBU offers value-added end-to-end solutions for FCC (Fluid Catalytic Cracking) revamps, Crude Distillation Unit/ Vacuum Distillation Unit revamps, Multi-Shutdown Facility revamps, Urea Reactor Life extension, Coke Drum repairs, Heat Exchanger revamp, Urea energy-saving projects, debottlenecking/capacity加强石油和天然气单元和工艺工业的紧急维修 - 核PBU专门为核电厂中的蒸汽供应系统提供关键设备。它制造了核岛的关键组成部分,例如蒸汽发生器,末端盾牌,压力箱,安全热交换器,反应堆标头组件,卡兰德里亚,末端配件等。à特殊制造单元(SFU)制造了关键的钛管阀,气化厂的复杂内部,循环反应堆,初级淬火式交换机(PQE)和石油化学部门的滤清器
Alfa Laval 和 Build to Zero 合作开发了一项开创性的长时储能 (LDES) 解决方案,用于减少工业二氧化碳排放。传热技术的全球领导者 Alfa Laval 和电热储能 (ETES) 技术开发商 Build to Zero 在战略合作方面迈出了重要一步。该合作伙伴关系刚刚启动了创新型直流热交换器的制造,该交换器旨在产生中压清洁蒸汽。这项尖端的蒸汽发生器技术将集成到 Build to Zero 专有的 ThermalBox® 解决方案中,旨在实现工业热过程脱碳。2022 年,热能占全球能源消耗的 50% 和二氧化碳 (CO2) 排放量的 38%(来源:IEA)。仅工业过程就贡献了全球近 20% 的二氧化碳排放量,其中大部分来自锅炉中化石燃料的燃烧。工业热能脱碳对于实现净零排放至关重要,是一项重大的技术挑战。 “根据 COP28 到 2030 年将可再生能源增加三倍的承诺,长时储能对于加速向可再生能源的过渡起着关键作用。与 Build to Zero 的合作标志着我们在脱碳和更可持续的未来道路上迈出了良好的一步”,Alfa Laval 能源部门总裁兼执行副总裁 Thomas Møller 表示。“我们与 Alfa Laval 的合作标志着我们加速工业脱碳使命的一个重要里程碑。通过将 Build to Zero 的创新 ThermalBox® 技术与 Alfa Laval 的尖端热交换器专业知识相结合,我们正在为能源转型中最严峻的挑战之一创造强大的解决方案:工业热脱碳”,Build to Zero 董事长 Joaquín Coronado 表示。Build to Zero 的 ThermalBox® 是旨在应对这一挑战的领先 ETES 解决方案之一。该公司最近获得了欧洲创新委员会 (EIC) 的混合资金,以扩大其 ThermalBox® 脱碳技术。阿法拉伐对此次合作的贡献包括生产直流蒸汽发生器,这代表了熔盐和水热交换器技术的突破。作为同类产品中的首款产品,这款蒸汽发生器将部署在 Dekitra,Dekitra 是一家专门生产和商业化用于整体水循环、造纸、洗涤剂和农用化学品行业的化学溶液的化学品制造商。通过此次合作,阿法拉伐和 Build to Zero 旨在加速向可持续工业流程的过渡,帮助各行业在保持运营效率的同时大幅减少碳足迹。
绵羊。 这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。 因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。 除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。 超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。 早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。 然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。 值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。绵羊。这种差异对尖端生殖生物技术的应用具有深远的影响,并可能阻碍高质量母猪生殖性能的改善和建立人类疾病的猪模型。因此,猪卵母细胞IVM的优化已成为全球猪繁殖群落研究的关键领域。除了激素水平(Lu等,2014; Sakaguchi和Nagano,2020),氨基酸的可用性(Bahrami等,2019; Lee等,2019),以及抗氧化剂补充剂(Das等,2014; li等,2019; li et al。卵母细胞成熟质量的重要决定因素(Baltz和Zhou,2012年)。超过一个世纪的哺乳动物胚胎培养经验强调了细胞体积控制在确定植入前胚胎的发育轨迹中的关键作用(Biggers,1998)。早期培养哺乳动物胚胎的努力是基于仿生型的,在培养基中定位了受精卵的卵子,其渗透压近似于该生物体内部环境(290 - 310 MOSM)。然而,这种方法导致物种特定的胚胎停滞,归因于渗透条件(Goddard和Pratt,1983; Camous等,1984; Camous等,1984; Bolton等,1989; Kishi等,1991)。值得注意的是,成功克服了这种发育障碍的培养基要么将培养基的渗透压降低,要么融合了有机渗透剂,例如甘氨酸(Gly),Betaine,β-丙氨酸和谷氨酰胺,渗透性为310 MOSM的培养基(Van Winkle等,1990; Biggers et al eal and osmolartials osmolarity。例如,已证明在KSOM或CZB培养基中培养小鼠胚胎(250 - 275 MOSM)可以抵御两细胞停滞(Chatot等,1990; Lawitts and Biggers,1991; 1993; 1993; Hadi等,2005)。当受外部条件干扰时,细胞体积控制的迅速恢复是通过Na + /H +交换器NHE1和HCO 3 + /Cl- -Chressanger AE2的激活来介导的,该E2调节Na +和Cl-的细胞内浓度。尽管如此,至关重要的是避免过度高离子浓度,这可能破坏正常的细胞生理和生化过程。Subsequently, preimplantation embryos and oocytes reactivate speci fi c organic osmolyte channels to internalize uncharged osmolytes, replacing inorganic ions and ensuring that cells maintain normal physiological and biochemical processes ( Alper, 2009 ; Donowitz et al., 2013 ; Nakajima et al., 2013 ; Tscherner et al., 2021)。对小鼠卵母细胞中的细胞体积调节机制的研究表明,编码Gly Transporter的SLC6A9的特定缺失消除了植入前胚胎中的GLY转运及其对催眠应激的能力(Tscherner等人,2023)。这些发现强调了对哺乳动物卵母细胞和植入前胚胎的健康发展进行精确细胞体积调节的必要性。gly是蛋白质和核酸合成中必不可少的前体,这对于快速细胞增殖至关重要(Redel等,2016; Alves等,2019)。据报道,Gly是猪卵泡液中最丰富的氨基酸(Hong and Lee,2007),这表明Gly可能是在体外改善卵母细胞成熟的重要因素。虽然精确的机制仍有待完全阐明,但新出现的证据表明,Gly作为牛胚胎和小鼠卵母细胞发展中的有机渗透剂的重要作用(Zhou等,2013; Herrick et al。