影响 R 1 、R 2 和 R clamp 值的另一个因素与电流消耗预算和输入信号噪声抑制有关。这里更详细地讨论了第二个因素。来自传感器的信号可能有噪声。噪声的时间常数小于采样时间 T 采样 ,对 ADC 来说是透明的,导致输出失真。在这种情况下,额外的专用旁路电容器与钳位电阻器和电阻分压器一起用作低通滤波器。较大的电容器会降低交流阻抗,并且更有效地分流噪声信号。通常,此低通滤波器的时间常数 (R clamp + R 1 || R 2 ) x C noise 应选择为远大于采样时间(根据经验法则,大 5 到 10 倍)。
专用阻抗系统的引入。[4] 其最简单的形式是,在浸入细菌培养物的一对电极上测量单一频率的交流阻抗。[5] 随着细菌的生长,培养基的电导率会发生变化[6],这是细菌代谢的结果,不带电的底物会转化为带电的代谢物。[4,7] 这反过来又导致阻抗的变化。[5] 事实证明,阻抗优于通常用于尿液[8] 和血液中细菌检测的菌落形成单位计数。[9,10] 研究发现,培养基的电导率与吸光度监测的细菌生长有很好的相关性。[11] 尽管该领域取得了进展,但只有少数阻抗传感器实现了商业化,主要是因为检测限不令人满意且生产成本高。 [5] 1977 年共轭聚合物的发现和有机生物电子学的出现,为科学界提供了能够进行离子和电子传输的低成本、易于加工的材料。[12,13] 这导致了微生物学和感染研究的创新方法和新型设备的开发。[14–17]
摘要:硅阳极需要机械强度高且电化学稳定的聚合物粘合剂体系,以适应循环操作过程中经历的剧烈体积膨胀。在此,我们报告使用聚(丙烯酸)接枝苯乙烯-丁二烯橡胶(PAA- g- SBR)和 80% 部分中和的 Na-PAA 作为硅石墨阳极的粘合剂体系。PAA- g -SBR 接枝共聚物是通过将丙烯酸叔丁酯接枝到 SBR 上并用 H 3 PO 4 处理中间体合成的。发现 PAA- g -SBR/Na-PAA 粘合剂体系比 Na-PAA/SBR 体系具有更好的电化学性能。Na-PAA/PAA- g -SBR 体系在 130 次循环中具有稳定的 673 mAh g -1 容量保持率,而 Na-PAA/SBR 体系的容量保持率立即下降。 Na-PAA/PAA- g -SBR 体系还表现出更好的机械性能,与 Na-PAA/SBR 体系相比,杨氏模量值更低,失效应变更大。总体而言,这些发现表明,在下一代锂离子电池中,硅阳极应用是一种有前途且坚固的聚合物粘合剂体系。关键词:锂离子电池、硅电极、PAA-g-SBR 聚合物、丙烯酸叔丁酯、交流阻抗、电极粘附、储能应用■ 介绍
(2020 年 2 月 4 日收到;2021 年 4 月 2 日修订;2021 年 4 月 4 日接受) 摘要。本文介绍了一种使用四异丙醇钛作为钛源通过溶胶-凝胶技术生产二氧化钛 (TiO 2 ) 纳米粒子的新合成方法。使用 X 射线衍射 (XRD)、HRTEM、吸收紫外光谱、FTIR 和交流阻抗光谱等多种测量方法分析了合成的纳米粒子。利用 X 射线峰通过 Williamson-Hall 方法计算晶粒尺寸和晶格应变。使用 Scherrer 方程通过 X 射线衍射计算出的晶粒尺寸给出近似尺寸,不能用于测量。发现 TiO 2 纳米粒子具有四方结构,晶体尺寸约为 12 纳米。通过 HRTEM 图像确认了粒度。对纳米粒子的光学研究响应表明,TiO 2 纳米粒子的可能可见吸收峰为 323 nm。讨论了从紫外可见吸收光谱计算出的 TiO 2 纳米粒子的带隙能量 (E g ),带隙为 3.14 eV。FTIR 光谱显示了 Ti-O 网络的振动带。在不同温度下,在 1 至 8 MHz 的频率范围内研究了 TiO 2 纳米粒子的交流电导率特性。发现 TiO 2 纳米粒子的电导率在低角频率区域保持恒定。在不同温度和频率下分析了介电参数。关键词:电导率、介电体、纳米粒子、二氧化钛、结构研究