摘要 本文提出了一种30 Gbps 1.25 pJ/b光接收机模拟前端(Rx_AFE),主要由有源电压电流反馈跨阻放大器(AVCF-TIA)和交错有源反馈限幅放大器(LA)组成。通过在所提出的TIA中采用有源电压电流反馈技术,大输入电容得到很好的隔离,而不受低电源电压的限制,并且显著缓解了跨阻增益和输出极点频率之间的直接矛盾。同时,通过在LA设计中采用交错有源反馈技术,带宽进一步扩展。所提出的Rx_AFE采用40 nm bulk-CMOS工艺制造,跨阻增益为63.8 dB Ω,3 dB带宽为24.3 GHz。从电源电压 1.0 V 开始,当运行 30 Gbps PRBS 时,电路的功耗和功率效率分别为 37.5 mW 和 1.25 pJ/b。核心电路占用的芯片面积为 920 µ m × 690 µ m。关键词:光接收器、跨阻放大器 (TIA)、有源电压-电流反馈、交错有源反馈、限幅放大器 (LA)、CMOS 分类:集成电路(存储器、逻辑、模拟、RF、传感器)
1 无锡大学留学生学院,无锡 214105,中国;grasool@zju.edu.cn 2 北京工业大学材料与制造学院智能机械研究所,北京 100124,中国 3 卡西姆大学理学院数学系,布赖达 51452,沙特阿拉伯;abdulkafi.ahmed@qu.edu.sa 4 联邦理工大学数学科学系流体动力学与测量研究组,阿库雷 PMB 704,尼日利亚; anizakph2007@gmail.com 5 马斯卡拉大学数学量物理与数学建模实验室 (LPQ3M),马斯卡拉 29000,阿尔及利亚 6 乌姆阿尔古拉大学工程与伊斯兰建筑学院机械工程系,邮政信箱 5555,麦加 21955,沙特阿拉伯;kmguedri@uqu.edu.sa 7 维贾亚纳加拉斯里克里斯纳德瓦拉亚大学数学系,巴拉里 583105,卡纳塔克邦,印度;hanumeshvaidya@gmail.com 8 哈立德国王大学科学学院化学系,邮政信箱 9004,阿卜哈 61413,沙特阿拉伯;rmarzouki@kku.edu.sa * 通信地址:a.aissa@univ-mascara.dz
传输使能输入。内部下拉。TXENABLE 有两个用途。在所有模式下,TXENABLE 必须为高电平,才能启用 DAC 的 DATA。当 TXENABLE 为低电平时,数字逻辑部分被强制为全 0,并且任何输入数据都被忽略。在交错数据模式下,TXENABLE 可用于将数据同步到通道 A 和 B。第一个 A 通道样本应与 TXENABLE 的上升沿对齐。
摘要:提出一种新型交叉肋条微通道(MC-CR)热沉,使流体自旋转。针对100 w/cm 2 的热测试芯片(TTC),将交叉肋条微通道与矩形(MC-R)和水平肋条微通道(MC-HR)热沉进行了比较。结果表明:采用交叉肋条微通道后,热测试芯片的结温为336.49 K,压降为22 kPa。与矩形和水平肋条热沉相比,交叉肋条微通道的冷却能力分别提高了28.6%和14.3%,但压降增加了10.7倍和5.5倍。然后,研究了不同流速下微通道长宽比(λ)的影响,发现长宽比与冷却性能呈非线性关系。为降低压降,对横肋的倾角(α)和间距(S)进行了优化,当α=30°、S=0.1mm、λ=4时,压降由22kPa降至4.5kPa。另外,在相同压降条件下,分析了矩形、交错翅片(MC-SF)、交错肋片(MC-SR)及横肋微通道的散热性能,MC-CR仍具有优越的散热性能。
摘要。耐力能力是评估电动汽车性能的关键指标。在有限的空间中提高电池组的能量密度,同时确保车辆的安全性是当前使用的技术解决方案之一。因此,本文提出了一个较小的空间和高能密度电池布置方案。比较了两个基于相同音量和不同空间布置的两个电池组的全面性能。此外,基于相同的热管理系统(PCM-File系统),使用不同的精细结构在数值上模拟了具有高能量密度的交错电池组的热性能,并使用插入式权量托管方法确定了以3C放电速率在3C放电速率下交错电池组的最佳限制结构参数。结果表明,增加填充和电池之间的接触厚度(x)可以降低最高温度,但会降低温度均匀性。此外,修复宽度(a)的变化对电池组的热量耗散性能没有显着影响。熵权重方法客观地将权重分配给最高温度(t最大)和温度差(∆ T),并确定冷却系统限制参数的最佳解决方案。发现当x = 0时。67毫米,a = 0。6毫米,交错的电池组具有最佳的全面性能。
电荷半径是原子核最基本的属性之一,用于描述其电荷分布。尽管 A 1 / 3 规则很好地描述了质量数函数的总体趋势,但一些精细结构(例如沿钙同位素链的演变和相应的奇偶交错)在密度泛函理论和从头算方法中都难以描述。在本文中,我们提出了一种描述钙同位素电荷半径的新假设,即在相对论平均场模型中计算的电荷半径上添加一个校正项,该校正项与库珀对的数量成比例,由 BCS 振幅和一个参数决定,并使用 BCS 方法处理配对相互作用。新假设的结果不仅与钙同位素的数据一致,而且与氧、氖、镁、铬、镍、锗、锆、镉、锡和铅等十种其他同位素链的数据也一致。值得注意的是,这个具有单一参数的假设可以描述整个周期表中的核电荷半径,特别是奇偶交错和抛物线行为。我们希望本研究可以激发更多关于其性质及其与用于解释电荷半径奇偶交错的其他效应的关系的讨论。
开发了一种首创的 SiO 2 区域选择性沉积工艺,包括在同一空间原子层沉积 (ALD) 工具中交替曝光小分子抑制剂 (SMI) 和背蚀刻校正步骤的薄膜沉积。这些方面的协同作用导致选择性 SiO 2 沉积高达 ˜23 nm,具有高选择性和高吞吐量,具有 SiO 2 生长区域和 ZnO 非生长区域。X 射线光电子能谱 (XPS) 和低能离子散射光谱 (LEIS) 均证实了选择性。已经通过实验和理论比较了两种不同的 SMI(乙基丁酸和新戊酸)赋予的选择性。密度泛函理论 (DFT) 计算表明,使用两种 SMI 进行选择性表面功能化主要受热力学控制,而使用三甲基乙酸时实现的更好选择性可以通过其比乙基丁酸更高的堆积密度来解释。通过在其他起始表面(Ta 2 O 5、ZrO 2 等)上使用三甲基乙酸作为 SMI 并探测选择性,证明了羧酸抑制剂在不同基底上的更广泛用途。人们认为,当前的结果突出了 SMI 属性的微妙之处,例如尺寸、几何形状和堆积,以及交错的回蚀步骤,这些对于开发更有效的高选择性沉积工艺策略至关重要。
太阳能电池市场由硅光伏电池主导,约占整个市场的 92%。硅太阳能电池制造工艺涉及几个关键步骤,这些步骤在很大程度上影响电池效率。这包括表面纹理化、扩散、抗反射涂层和接触金属化。在关键工艺中,金属化更为重要。通过优化接触金属化,可以减少或控制太阳能电池的电和光损耗。本文简要讨论了传统和先进的硅太阳能电池工艺。随后,详细回顾了传统硅太阳能电池中用于前接触的不同金属化技术,例如丝网印刷和镀镍/镀铜。背面金属化对于提高钝化发射极背接触电池和交错背接触电池的效率非常重要。本文回顾了钝化发射极背接触 (PERC) 电池中局部 Al 接触形成的当前模型,并讨论了工艺参数对局部 Al 接触形成的影响。此外,本文还简要回顾了交错背接触 (IBC) 电池中的接触机制和金属接触的影响。对传统丝网印刷太阳能电池的金属化研究重点与 PERC 和 IBC 电池进行了比较。