AU:请确认所有标题级别均正确表示:随着全球人口增长和气候变化,作物生产正变得越来越具有挑战性。现代栽培作物品种是根据最佳生长环境下的生产力进行选择的,并且经常会丢失可能使它们适应多样化且现在迅速变化的环境的遗传变异。这些遗传变异通常存在于其最接近的野生亲属中,但不太理想的性状也是如此。如何保存和有效利用作物野生亲属提供的丰富遗传资源,同时避免有害变异和适应不良的遗传贡献,是持续改良作物的核心挑战。本文探讨了这一挑战以及可能找到解决方案的潜在途径。
全球农业产业面临着满足未来粮食需求的压力;然而,现有的作物遗传多样性可能不足以满足这一期望。基因组测序技术的进步和 300 多种植物参考基因组的可用性揭示了作物野生近缘种 (CWR) 中隐藏的遗传多样性,这可能对作物改良产生重大影响。世界各地有许多移地和原地资源,其中许多具有重要的农学特性,用户必须了解它们的可用性。在这里,我们旨在探索可用的移地/原地资源,如基因库、植物园、国家公园、保护热点和拥有 CWR 种质的清单。此外,我们重点介绍了 CWR 基因组资源的可用性和使用方面的进展,例如它们在泛基因组构建和将新基因引入作物中的贡献。我们还讨论了在农作物野生亲缘植物中使用的现代育种实验方法(例如从头驯化、基因组编辑和快速育种)的潜力和挑战,以及使用计算(例如机器学习)方法加速农作物野生亲缘植物物种在育种计划中的利用,以提高作物适应性和产量。
野生哺乳动物是那些依靠自己寻找所需食物、水和住所的物种。在伊利诺伊州,浣熊、鹿鼠、狐狸和山猫就是其中一些野生哺乳动物。家养哺乳动物是那些为特殊目的而饲养的哺乳动物。它们与曾经野生的哺乳动物有亲缘关系。牛、马、羊和猪都是家养哺乳动物的例子。家养哺乳动物的一些生存需求来自人类。“驯养”哺乳动物是宠物。它们是家养动物。但并非所有家养哺乳动物都是驯养的。对于大多数哺乳动物物种而言,可能只有一只动物变得“驯服”,而其余的动物仍保持野生状态。一些曾经被驯养的哺乳动物又变得野生了。它们被称为“野性”,比如野猪和野猫。
一般而言,作物的起源中心与其最大程度的多样性有关。然而,也应注意,作物在驯化和栽培的过程中可能会形成多个多样性中心(Harlan,1971;Harlan,1975)。提出的驯化过程长期多中心模型特别适用于栽培作物,而不适用于其野生近缘种,因为栽培作物受到的人工选择压力较大,而野生近缘种只受到自然选择压力(Allaby 等人,2008)。这反映在一种作物的不同种质种质中多种性状以阵列模式共存于多个位置,每个种质都拥有不同的感兴趣性状组合(Esquinas-Alca zar,2005)。例如,为了表示水稻的谷粒大小和颜色、植株结构、种子落粒性(但适合脱粒)、各种非生物和生物胁迫耐受性、糯粒、开花时间和生命周期(短、中、长周期)等性状的完全变异性,我们需要大量的基因型(Izawa,2022 年;Shang 等人,2022 年)。如果我们将驯化过程中选择压力的结果以性状与变异性的形式列出,每个细胞包含适当的基因型,我们将获得一系列代表不同表型性状及其内部变异性的种质。这将揭示,如果特定基因型丢失,作物植物更容易受到遗传侵蚀(与作物野生近缘种 CWR 相比)。这是因为尽管存在自然选择压力,但农作物野生亲缘植物由于缺乏人工选择压力而未能多样化(在排列模式上)。保护这些珍贵的农作物遗传资源和农作物野生亲缘植物对于通过持续的农作物改良实现粮食安全至关重要。
DNA 测序技术的进步使得对数千个个体的全基因组进行测序成为可能,并为每个个体提供数百万个单核苷酸多态性 (SNP)。这些数据与精确和高通量的表型分析相结合,使全基因组关联研究 (GWAS) 和识别具有复杂遗传结构特征的 SNP 成为可能。识别出的因果 SNP 和估计的等位基因效应随后可用于育种计划中的高级标记辅助选择 (MAS)。但这种 MAS 能否与广泛使用的基因组选择 (GS) 相媲美?这个问题对于冗长的树木育种策略尤其有意义。在这里,我们使用新软件“SNPscan breeder”,模拟了一个简单的树木育种计划,并比较了不同选择标准对遗传增益和近亲繁殖的影响。此外,我们评估了育种种群中个体之间的不同遗传结构和不同亲缘关系水平。有趣的是,除了后代测试外,使用 gBLUP 的 GS 在几乎所有模拟场景下都表现最佳。仅当在大量无亲缘关系的个体(约 10,000 个个体)中估计等位基因效应时,基于 GWAS 结果的 MAS 才优于 GS。值得注意的是,使用 3,000 种极端表型的 GWAS 表现与使用 10,000 种表型一样好。与子代测试和基于 GWAS 的选择相比,GS 增加了近亲繁殖,因此更强烈地降低了遗传多样性。我们讨论了对树木育种计划的实际意义。总之,我们的分析进一步支持了 GS 在林木育种和改良方面的潜力,尽管 MAS 在未来可能会随着测序成本的降低而变得更加重要。
摘要 随着测序技术的快速发展和随之而来的测序成本的降低,大量观赏植物被完成了测序,其基因组研究也从基因克隆和标记开发转向全基因组分析。在全基因组水平上深入了解基因组的结构和功能,不仅有助于通过基因工程改造观赏植物的香气、颜色和花形等性状,还可以通过比较基因组学分析推断观赏植物的亲缘关系和进化历史。本文综述了测序策略的现状以及基因组学在观赏植物起源和进化研究中的应用,并指出了观赏植物基因组学研究面临的挑战。利用基因组学、基因编辑和分子设计聚合育种等前沿技术,可以促进我们了解观赏植物重要性状的遗传调控机制和种质创新,有望大幅提高观赏植物的育种效率。
猪笼草又名猪笼草,是一种独特而有趣的植物,已被广泛开发作为观赏植物。这种植物的魅力不仅在于它的花朵,还在于它的花囊,花囊的形状和颜色多种多样。基于分子表征可以确定猪笼草的几种物种和杂交种的多样性。这项研究的目的是计算遗传多样性的值,并在分子基础上利用 RAPD 引物测试印度尼西亚猪笼草之间的关系。本研究使用的材料是从 Yagiza 苗圃猪笼草苗圃、食虫植物苗圃、Tulungagung 猪笼草群落和毒液苗圃的勘探结果中获得的 41 种物种和由 3 个个体组成的猪笼草杂交种。分子 DNA 分析是在加查马达大学 (UGM) 农学院农业栽培系遗传学和植物育种实验室进行的。 3个RAPD引物(OPD 8、OPC 2和OPC15)对41个物种及其杂交种进行检测,共得到85个位点,1370个DNA带,大小为150~1750 bp,多态性水平为100%,形成的特异性带数共12条。聚类分析结果表明,多样性水平在17%~100%之间,可分为A组和B组,相似性水平为17%。遗传参数分析结果表明,居群(N. eustahcya x N. ampularia)各参数的遗传差异最大且一致(Na=0.576±0.092、Ne=1.162±0.035、I=0.136±0.027),PLP为23,53%,平均杂合度(H)为0.093±0.019。最高相似系数值为0.338,表明N.veitchii与N.adnata亲缘关系较远,最低相似系数值为0.050,表明N.maxima wavy与N.maluku亲缘关系较近。AMOVA分析显示,猪笼草居群间遗传多样性分布值(74%)高于居群内多样性值(26%)。同时,猪笼草种群间遗传多样性分布值(70%)高于种群内遗传多样性分布值(30%)。关键词:猪笼草;分子;RAPD。
未来的可持续农业将依赖于能够耐受生物和非生物胁迫、只需要最少的水和养分投入、并且能够以最小的碳足迹种植的作物。满足这些要求的野生植物在自然界中比比皆是,但通常产量较低。因此,用产量较低但恢复力强的品种取代目前的高产作物将需要做出艰难的权衡,即增加种植面积以产生相同的产量。种植更多的土地会减少自然资源、减少生物多样性并增加我们的碳足迹。可持续集约化可以通过增加已经具有恢复力的未充分利用或野生植物品种的产量来实现,但通过常规育种计划实现这一目标可能是一个长期的前景。利用诱变技术对孤儿或作物野生亲缘种进行从头驯化是一种获得高产恢复力作物的替代且快速的方法。借助新的精确分子技术,应该能够在比农业史上任何时候都短得多的时间内实现经济可持续的产量。
未来的可持续农业将依赖于能够耐受生物和非生物胁迫、只需要最少的水和养分投入、并且能够以最小的碳足迹种植的作物。满足这些要求的野生植物在自然界中比比皆是,但通常产量较低。因此,用产量较低但恢复力强的品种取代目前的高产作物将需要做出艰难的权衡,即增加种植面积以产生相同的产量。种植更多的土地会减少自然资源、减少生物多样性并增加我们的碳足迹。可持续集约化可以通过增加已经具有恢复力的未充分利用或野生植物品种的产量来实现,但通过常规育种计划实现这一目标可能是一个长期的前景。利用诱变技术对孤儿或作物野生亲缘种进行从头驯化是一种获得高产恢复力作物的替代且快速的方法。借助新的精确分子技术,应该能够在比农业史上任何时候都短得多的时间内实现经济可持续的产量。
随着最近发布的高质量参考基因组组装,普通狨猴(Callithrix jacchus)已成为生物医学研究中一种有价值的非人灵长类动物模型。两个亚洲灵长类动物研究中心均独立报道了患有癫痫的狨猴。尽管如此,这些灵长类动物中心的群体遗传学和与狨猴癫痫相关的特定遗传变异尚未阐明。在这里,我们利用全基因组测序技术,对来自两个癫痫狨猴谱系的 41 个样本的遗传关系和癫痫风险变异进行了表征。我们从 41 个样本中鉴定了 14 558 184 个单核苷酸多态性(SNP),发现血液样本中的嵌合水平高于指甲样本。基因分析显示,灵长类动物中心的狨猴之间存在四度亲缘关系。此外,SNP 和拷贝数变异 (CNV) 分析表明,含 WW 结构域的氧化还原酶 ( WWOX ) 和酪氨酸蛋白磷酸酶非受体 21 型 ( PTPN21 ) 基因可能与狨猴癫痫有关。值得注意的是,