随着人类将目光投向深空探索和长期太空任务,航天器和太空栖息地对人工重力的需求也变得越来越迫切。长时间暴露在微重力环境中会导致一系列生理问题,包括肌肉萎缩、骨密度降低和体液重新分布。这些有害影响对执行数月甚至数年任务的宇航员的健康和福祉构成了重大挑战。本综述探讨了深空栖息地人工重力产生的当前研究,研究了可能实现可持续人工重力环境的挑战、技术和潜在解决方案。我们讨论了离心方法(例如旋转栖息地)和非离心方法(包括电磁场和静电场)。此外,我们还强调了操作和工程限制,以及可能解决这些障碍的未来发展潜力。
1 一级方程式赛车在快速转弯时抵抗高 g 力。摄影:Oscar Sant'ın。 ... ....................................................................................................................8 5 美国宇航局兰利研究中心的科学家设计的空间站。图片来自美国宇航局历史部门....................................................................................................................9 6 分割的弧形地板表示。取自 [2] ....................................................................................................9 7 电影《2001:太空漫游》中的空间站 V。[3] ....................................................................................10 8 电影《星际穿越》中的奥尼尔圆柱体空间站 [2014] ....................................................................10 9 斯坦福环面插图...................................................................................................................................................11 10 鹦鹉螺-X 航天器表示。 . ... ... . ....。 ... ... 22 17 带潮汐力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力。 23 18 带垂直科里奥利力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力...................................................................................................................................................................................................................................................... 24 19 带倾斜科里奥利力限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力...................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . 25 20 科里奥利效应表示。图片取自 [6]。 . . . . . . . . . . . . . . . . 26 21 带运河疾病限制的人工重力图。取自 YouTube 频道 Cool Worlds 的视频文章:人工重力。 28 22 视重:案例 1 . . . . . . . . . . . . . . . . . . . . . . . 32 23 视重:案例 2 . . . . . . . . . . . . . . . . . . . 33 24 视重:案例 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 25 猎鹰 1 号首飞尝试 . . . . . . . . . . . . . . . . . . . . . .39 26 猎鹰 9 号从卡纳维拉尔角发射。图片来源:SpaceX。 ...
本文介绍了三体旋转系统的研究和设计,该系统将用作研究不同重力变量(包括模拟月球和火星重力条件)下系统功能和人体生理学的前兆/试验台。试验台将是收集人造重力对航天器系统和人体生理学影响数据的必要步骤,有助于优化月球和火星表面栖息地以及人造重力航天器的设计方案。这将是低地球轨道可变重力研究平台开发的第一阶段,用于长期研究可变重力梯度和旋转引起的重力模拟的影响。确保宇航员在长期火星任务期间的安全以及他们返回后的恢复是任务成功的关键要求。因此,在执行任务之前必须充分了解部分重力对生理和心理能力的长期影响,并且需要一个研究平台来研究部分重力对人类和技术系统的影响。在低地球轨道 (LEO) 绕地球运行的可变重力研究平台可以解决这一知识空白。低地球轨道是此类设施的理想地点,因为低地球轨道距离地球表面很近,而且可以利用那里现有的基础设施和商业活动。此类平台的开发需要分阶段进行。本文介绍了第一阶段。它是研究平台的试验台,由两艘定制的龙飞船组成,龙飞船停靠在中央枢纽,然后停靠在国际空间站的 Zvezda 舱。该提案旨在利用现成的元素来降低开发成本和时间,使我们能够使用当今的技术在“明天”进行测试。为了执行操作,试验台将脱离对接,撤退到国际空间站后方 2000 米处,并通过启动增强推进器开始旋转。然后,载人龙飞船将系绳到所需的旋转半径以开始测试操作。完成后,试验台将停止旋转,收回系绳并重新对接国际空间站。该序列将根据需要重复。本文还介绍了测试平台的测试目标、优势、劣势、机遇和威胁的分析、测试平台组成部分的设计开发和选择标准、操作概念和与测试平台相关的可能风险及其各自的缓解措施。