人工智能 (AI) 正在通过执行各种任务来改变服务交付,产生大量创新,同时威胁人类就业。服务工作通常需要四种智能:机械、分析、直觉和同情。企业完全可以在人类和技术之间做出选择来完成这些活动。机械智能通常先于分析智能,分析智能通常先于直觉智能,直觉智能通常先于共情智能 (Huang & Rust, 2018)。组织越来越多地使用表现出人类智能 (HI) 特征的机器,即人工智能 (AI)。例如,在大数据 AI 应用中,机器人顾问被用来取代投资组合经理,虚拟机器人将客户支持转变为自助服务 (Divatia、Tikoria 和 Lakdawala, 2021)。
• 信息技术迅速转变为信息革命,现在又转变为人工智能,这将对工业和国防部门的领导风格产生影响。 • 当今时代的组织是人力资源和智能机器的混合体,它们齐心协力,为系统的整体产出做出贡献。 • 人机融合将影响领导层如何应对组织,无论是在组织文化方面还是在运作方面。 • 在人机环境中,军事领导层需要适应不断变化的现实并克服相关挑战。 • 组织需要随时了解道德、伦理和法律问题,以充分利用其人机资产。
尽管工业和产品设计师都敏锐地意识到了设计美学的重要性,但他们做出美学设计决策主要基于直觉判断和“有根据的猜测”。虽然人体工程学和人为因素研究人员为人机环境系统的安全性、生产力、易用性和舒适性做出了巨大贡献,但美学作为人为因素和人体工程学系统科学研究的主题却在很大程度上被忽视了。设计决策对于实现可行且有价值的客舱格式至关重要。创新太少会导致飞机制造商和使用其产品的航空公司落后于竞争对手,可能在发布时使用的技术已经过时。太多可能会导致过度扩张,例如使用不具备安全关键行业所需可靠性的不成熟技术。在快速发展的技术领域,对预计的新技术的适应性非常重要。
摘要 本文介绍了一个原始的受控交互数据集,重点研究反馈项目。它包括由演员扮演的医生和患者之间的不同对话的记录。在这个语料库中,患者主要是倾听者,并产生不同的反馈,其中一些反馈不一致(自愿)。此外,这些对话已在虚拟现实环境中重新合成,其中患者由人工智能代理扮演。最终的语料库由不同的人与人对话电影以及在人机环境中重播的相同对话组成,从而产生了第一个人与人/人机平行语料库。然后,语料库在语言和非语言层面上用不同的多模态注释进行了丰富。此外,这是第一个此类数据集,我们设计了一个实验,在此期间,不同的参与者必须观看电影并对互动进行评估。在此任务中,我们记录了参与者的大脑信号。然后,Brain-IHM 数据集被构思用于三重目的:1/ 通过比较一致和不一致的反馈来研究反馈 2/ 比较人与人和人机产生的反馈 3/ 研究反馈感知的大脑基础。
摘要 本文介绍了一个原始的受控交互数据集,重点研究反馈项目。它包括由演员扮演的医生和患者之间的不同对话的记录。在这个语料库中,患者主要是倾听者,并产生不同的反馈,其中一些反馈不一致(自愿)。此外,这些对话已在虚拟现实环境中重新合成,其中患者由人工智能代理扮演。最终的语料库由不同的人与人对话电影以及在人机环境中重播的相同对话组成,从而产生了第一个人与人/人机平行语料库。然后,语料库在语言和非语言层面上用不同的多模态注释进行了丰富。此外,这是第一个此类数据集,我们设计了一个实验,在此期间,不同的参与者必须观看电影并对互动进行评估。在此任务中,我们记录了参与者的大脑信号。然后,Brain-IHM 数据集被构思用于三重目的:1/ 通过比较一致和不一致的反馈来研究反馈 2/ 比较人与人和人机产生的反馈 3/ 研究反馈感知的大脑基础。
控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公