9. S. 约瑟夫,《 Meta 推出 Codec Avatar :使用智能手机创建栩栩如生的头像》, The Tech Outlook , 2023 年 5 月 1 日, https://www.thetechoutlook.com/news/ innovation/meta-introduces-codex-avatars-life-like-avatars-that-can-be-created-using-a-smartphone/ 。
摘要 CRISPR/Cas9 系统 ( 常间回文重复序列丛集 / 常间回文重复序列丛集关联蛋白系统 ) 为靶向基因编辑提 供了强大的技术手段 . 利用序列特异性 sgRNA 的引导 , CRISPR/Cas9 系统能够精准地在目标 DNA 的确切位置导 入双链切口 . 与已有的基因编辑手段相比 , 该系统具有更优异的简便性、特异性和有效性 . 目前 , 大量涉及体内 外多物种的 CRISPR/Cas9 基因编辑研究已充分展示了该技术的巨大潜力 , 为基于该技术的疾病治疗研究和临床 应用带来了希望 . 基于 CRISPR/Cas9 基因编辑技术所介导的非同源性末端连接和同源性 DNA 修复作用 , 近期多 个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷 . 本综述 将总结近期有关利用 CRISPR/Cas9 基因编辑技术治疗人类遗传性疾病的相关临床前研究进展 .
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
[1] Egger G,Liang G,Aparicio A等。人类疾病的表观遗传学和表观遗传疗法的前景。 自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。 New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。 罕见的遗传疾病:诊断,治疗和在线资源的更新。 Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。 Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。 Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。 nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。 crispr提供了对原核生物中病毒的抗药性。 Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。 CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。 自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。 使用CRISPR/CAS系统的多重基因组工程。 Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。 适应性细菌免疫中可编程的双RNA引导的DNA内切酶。 Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。 通过抑制非同源末端连接来提高精确基因组编辑的效率。 nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。 快照:2类CRISPR-CAS系统。人类疾病的表观遗传学和表观遗传疗法的前景。自然,2004,429:457-63 [2] Varmus H.为基于基因的药物做好准备。New Engl J Med,2002,347:1526-7 [3] Pogue RE,Cavalcanti DP,Shanker S等。罕见的遗传疾病:诊断,治疗和在线资源的更新。Div> Discov今天,2018年,23:187-95 [4] Fischer A,Cavazzana-Calvo M.遗传疾病的基因治疗。Lancet,2008,371:2044-7 [5] Porteus M.基因组编辑:一种新的人类治疗方法。Annu Rev Pharmacol Toxicol,2016,56:163-90 [6] Cox DBT,Platt RJ,ZhangF。治疗基因组编辑:前景和挑战。nat Med,2015,21:121-31 [7] Barrangou R,Fremaux C,Deveau H等。crispr提供了对原核生物中病毒的抗药性。Science,2007,315:1709-12 [8] Deltcheva E,Chylinski K,Sharma CM等。CRISPR RNA通过反式编码的小RNA和宿主因子RNase III成熟。自然,2011,471:602-7 [9] Cong L,Ran FA,Cox D等。使用CRISPR/CAS系统的多重基因组工程。Science,2013,339:819-23 [10] Jinek M,Chylinski K,Fonfara I等。适应性细菌免疫中可编程的双RNA引导的DNA内切酶。Science,2012,337:816-21 [11] Maruyama T,Dougan SK,Truttmann MC等。通过抑制非同源末端连接来提高精确基因组编辑的效率。nat Biotechnol,2015,33:538-42 [12] Shmakov S,Smargon A,Scott D等。快照:2类CRISPR-CAS系统。2类CRISPR-CAS系统的多样性和演变。Nat Rev Microbiol,2017,15:169-82 [13] Makarova KS,Zhang F,Koonin EV。Cell,2017,168:328-328.e1 [14] Zetsche B,Gootenberg JS,Abudayyeh Oo等。CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。 Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。 使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源CPF1是2类CRISPR- CAS系统的单个RNA引导的内切酶。Cell,2015,163:759-71 [15] Ran Fa,Cong L,Yan WX等。使用金黄色葡萄球菌Cas9的体内基因组编辑。 自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。 在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源使用金黄色葡萄球菌Cas9的体内基因组编辑。自然,2015,520:186-91 [16] Kim E,Koo T,Park SW等。在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源在体内基因组编辑中,带有弯曲杆菌的小Cas9直系同源
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
会议报道:从科幻到现实,脑机接口如何连接 AI 与人类智慧? “《黑客帝国》在某种意义上描绘了脑机接口的终极目标:向大脑输入一个完整 的虚拟外部环境并与之双向交互。”上海科技大学生物医学工程学院常任轨助理 教授、计算认知与转化神经科学实验室主任李远宁说道。 近日,由天桥脑科学研究院(中国)主办的“从科幻到现实——人类智能如何与 人工智能融合?”主题活动在上海图书馆东馆举行。 活动上,李远宁与知名科幻作家,银河奖、全球华语星云奖金奖得主江波展开了 跨越科幻与科学的对谈,将脑机接口( Brain Computer Interface , BCI )这项从小 说走向现实、不断引爆学界和产业界热点的技术进行了生动演绎,探索脑机接口 与 AI 融合的无限可能,并客观阐释了从令人遐想的突破性个例到广泛应用的距 离。 脑科学是人类所知甚少的“自然科学最后一块疆域”,也是科幻作品经久不衰的 灵感来源。今年以来,天桥脑科学研究院(中国)发力 AI for Brain Science ,鼓励 AI 和脑科学这两个“黑匣子”互相启发、互相破译。 一方面,研究院已组织了六场 AI for Brain Science 学术会议,促进 AI 科学家、神 经科学家、临床医生、产业界专家和高校年轻学生学者同台共话,分享 AI for Brain Science 相关基础研究和健康应用,系列会议大众总观看 52 万人次,参会领域专 家 800 余人;另一方面,研究院也积极组织“ AI 问脑”系列科普会议,邀请 AI 科 学家、脑科学家展开跨界对谈,激发公众对 AI for Brain Science 的兴趣和探索。 点击此处阅读原文
监管路径 国家或地区 相关法律法规 人类基因编辑监管特点 日本 2000 年《人类克隆技术管制法案》 (The Human 没有制定专门涉及人类胚胎、受精卵、精子 Cloning Regulation Act) ,禁止将克隆人胚胎和 或卵子的伦理指南和法律,其更多依赖于 具有人类和动物遗传物质的胚胎植入子宫。 各个政府部门的监督管理。 2013 年《再生医学安全保障法》 (Regeneration Medicine Promotion Law) ,分级管理再生医疗 风险,科研机构使用基因工程方法修饰后细 胞培养和处理需要通知日本卫生劳动福利部, 获得许可后方可开展研究。 保守 德国 1949 年《德国基本法》 (Basic Law for the Federal 《德国基本法》并没有提供明确和直接的规 Republic of Germany) ,其第 1 条和第 2 条分别规 定,但规定了立法机关必须保护胚胎的基 定了人的尊严、生命权和完整权,保护的范围 本权利。 不仅包括精神病患者、植物人,还包括胎儿和 《胚胎保护法》形成了完全禁止人类胚胎 胚胎。 基因编辑相关临床试验的逻辑森严的刑法 1990 年《胚胎保护法》 (The German Embryo 规制框架。 Protection Law) ,管理人工基因干预生殖系细 胞的情况,其第 5 条第 1 款规定任何人为改变人 类生殖系细胞遗传信息的人,将被处以最高 5 年的监禁或罚款;其第 5 条第 4 款专门规定了非 生殖目的的体外生殖系细胞人工干预不适用第 1 款刑事禁令,确保科研人员在安全性的前提 下进行人类胚胎相关实验的自由。 欧盟 2007 年《欧洲联盟基本权利宪章》 (Charter of 法律允许人类体细胞基因编辑,但明确禁止 Fundamental Rights of the European Union) ,其 在人类胚胎上使用基因编辑技术。 第 3 条禁止基因改造医疗行为,包括人种选择 行为、将人体作为经济收益来源的行为以及克 隆人类行为。 1997 年《人权与生物医学公约》 (Convention on Human Rights and Biomedicine) ,其第 13 条也引 入了对优生学的禁令,规定只能基于预防、诊 断或治疗目的修改人类基因组,并且不允许在 任何后代的基因组中引入任何基因改造。 折衷 美国 2015 年美国白宫发布了有关现阶段反对任何人类 法律不限制技术本身,但限制技术的应用场 种系基因组编辑行为的声明。 2015 年《综合拨 景。鉴于基因编辑是一种工具,不是特定 款法案》 (Consolidated Appropriations Act) ,增 的药物、设备或生物疗法,因而必须在其 加了禁止美国食品药品监督管理局 (Food and 使用的每个领域中审视其是否符合法律 Drug Administration) 使用任何联邦资金资助有 规定。 意修改人类胚胎可遗传物质的研究。 美国食品药品监督管理局禁止涉及可遗传 人类基因组编辑的临床试验,一些州也明 确禁止人类胚胎的特定研究活动。 中国 2020 年《民法典》第 1009 条,从事与人体基因、人 法律对人类体细胞基因编辑的研究和应用不 体胚胎等有关的医学和科研活动,应当遵守法 加以限制,人类胚胎细胞的基因编辑基础 律、行政法规和国家有关规定,不得危害 人体 研究不被禁止,但其临床应用则不被允 健康,不得违背伦理道德,不得损害公共利益。 许,不论是用于生殖目的或是医治患者。 2020 年《刑法》修正案 ( 十一 ) 增加第三百三十 六条,将基因编辑、克隆的人类胚胎植入人体 或者动物体内,或者将基因编辑、克隆的动物 胚胎植入人体内,情节严重的,处三年以下有 期徒刑或者拘役,并处罚金;情节特别严重的, 处三年以上七年以下有期徒刑,并处罚金。