这里考虑的混合脑机接口 (BCI) 系统是脑电图 (EEG) 和功能性近红外光谱 (fNIRS) 的组合。同时记录 EEG-fNIRS 信号以实现高运动想象任务分类。这种集成有助于实现更好的系统性能,但代价是增加系统复杂性和计算时间。在混合 BCI 研究中,通道选择被认为是直接影响系统性能的关键因素。在本文中,我们提出了一种使用 Pearson 积矩相关系数的新型通道选择方法,其中仅从每个半球选择高度相关的通道。然后,提取四个不同的统计特征,并使用它们的不同组合通过 KNN 和树分类器进行分类。据我们所知,目前还没有关于皮尔逊积矩相关系数用于混合EEG-fNIRS BCI通道选择的报道。结果表明,我们的混合系统显著减少了计算负担,同时实现了与现有文献相当的具有高可靠性的分类精度。
本白皮书探讨了人工验证与人工智能的整合,特别关注了 Aira 的 Access AI 和 Aira Verify。Access AI 是一款面向盲人和低视力群体的人工智能图像聊天工具,它为实时图像描述提供了新的可能性,但也带来了人工智能幻觉等挑战——不正确或误导性的回答。通过聚类分析、任务分类和统计研究,Aira 分析了行业领先的人工智能模型,揭示了围绕幻觉的挑战,揭示了人工验证的必要性。为了应对这些挑战,Aira 实施了 Aira Verify,这是一种人机协同 (HITL) 流程,利用专业的视觉解释器通过验证或纠正人工智能响应来提高人工智能的准确性。本白皮书详细介绍了人工监督在人工智能应用中的重要性、人工验证在减少幻觉方面的有效性,以及通过分析行业领先的人工智能性能和用户反馈获得的见解。
脑电图 (EEG) 广泛应用于脑机接口研究 [15]。利用 EEG 信号对认知任务进行分类一直是过去几十年的讨论焦点 [16]。低信噪比是 EEG 信号分类的常见障碍。虽然多种类型的机器学习和深度学习算法已用于认知任务分类 [4, 12, 23],但如果没有适当的噪声分离,EEG 信号分类的准确性就会遇到瓶颈。EEG 数据中的噪声可能来自各种来源,主要可分为两大类:i)来自外界的噪声,包括环境噪声、实验设置引起的噪声和静电引起的噪声等因素;ii)来自人体的噪声,包括眨眼和呼吸等身体活动以及分散注意力的想法等心理活动 [25]。尽管已经进行了大量研究并取得了成功,可以消除外部噪音 [14],但检测和消除内部噪音的问题仍然是一个需要进一步探索的领域。本文将重点关注后者的噪音来源,即心理活动的噪音,旨在设计一种算法来检测和消除心理干扰造成的噪音。
摘要:神经科学的基本问题是理解解剖结构如何支持大脑功能的工作机制,以及显著的功能波动如何引发普遍存在的行为。我们在系统辨识领域提出了这个逆问题,其中我们使用几何散射变换(GST)来模拟结构-功能耦合,并使用神经库普曼算子来揭示底层复杂系统的动态机制。首先,使用GST通过将大脑活动的代理信号投射到受大脑中连接模式几何约束的神经流形中来构建测量集合。然后,我们寻求找到一个库普曼算子,以相对简单的线性映射阐明部分观察和行为结果之间的复杂关系,这使我们能够理解控制系统中的功能动力学。此外,我们将 GST 和 Koopman 算子集成到端到端深度神经网络中,从而生成具有数学保证的可解释大脑动力学模型。通过对人类连接组项目-衰老 (HCP- A) 数据集进行的严格实验,我们的方法在认知任务分类中表现出最先进的性能,超越了现有基准。更重要的是,我们的方法在使用机器学习方法揭示大脑动力学的新见解方面显示出巨大的潜力。
摘要 — 非侵入式脑机接口 (BCI) 已被开发用于通过使用脑电图 (EEG) 信号来理解用户的意图。随着人工智能的发展,无人机控制系统也取得了许多进展。能够反映用户意图的 BCI 特性导致了基于 BCI 的无人机控制系统的出现。使用无人机群比使用单架无人机具有更多优势,例如任务多样性。特别是,基于 BCI 的无人机群控制可以为军事服务或行业灾难等各个行业提供许多优势。BCI 范式包括外生范式和内生范式。内生范式可以独立于任何刺激根据用户的意图进行操作。在本研究中,我们设计了专门用于无人机群控制的内生范式(即运动想象 (MI)、视觉想象 (VI) 和语音想象 (SI)),并进行了基于脑电图的与无人机群控制相关的各种任务分类。五名受试者参加了实验,并使用基本机器学习算法评估了表现。MI、VI 和 SI 的总平均准确率分别为 51.1% (± 8.02)、53.2% (± 3.11) 和 41.9% (± 6.09)。因此,我们证实了使用各种内生范式增加无人机群控制自由度的可行性。关键词-脑机接口;脑电图;无人机群控制;直觉范式
摘要—本文研究了疼痛的存在对基于功能性近红外光谱 (fNIRS) 的脑机接口 (BCI) 中心算任务分类准确性的影响。在有和没有外部疼痛刺激的情况下执行两个心算任务时,从前额叶和运动皮质获得 fNIRS 记录。针对每个任务提取无痛和疼痛条件下 fNIRS 信号的各种频域参数并用作特征。使用二次核的支持向量机 (QSVM) 作为分类器。考虑了四种训练和测试分类器的场景:(1) 使用无痛数据进行训练和测试,(2) 使用低痛数据进行训练和测试,(3) 使用无痛数据进行训练并使用低痛数据进行测试,以及 (4) 使用低痛数据进行训练并使用无痛数据进行测试。结果表明,当使用疼痛时获得的数据对模型进行测试时,使用无痛数据训练的模型的分类准确率会显著降低。同样,当使用疼痛时获得的数据对模型进行训练但使用无痛数据进行测试时,准确率也会下降。这些结果强调了在为有需要的患者开发 BCI 时考虑疼痛引起的皮质活动变化的重要性。
摘要:本文讨论了通过使用大脑连接估计器作为特征来讨论脑电图(脑电图)基于脑电图分散分类的新方法。有超过一年的驾驶经验和平均年龄为24.3的健康志愿者参加了具有两个条件的虚拟现实环境,简单的数学解决问题任务和一项骑行任务,以模仿分心的驾驶任务和一项非分布驾驶任务。独立的组件分析(ICA)是在与额叶,中央,顶,枕骨,左运动和右运动区域相关的六个选定组件的选定时期进行的。Granger – Geweke因果关系(GGC),定向转移函数(DTF),部分定向相干(PDC)和广义部分定向相干性(GPDC)大脑连接估计器用于计算连接性矩阵。这些连接矩阵被用作具有径向基函数(RBF)的支持向量机(SVM)的功能,并将分心和非分布驾驶任务分类。GGC,DTF,PDC和GPDC连接估计器的分类精度分别为82.27%,70.02%,86.19%和80.95%。进行了PDC连接估计器的进一步分析,以确定分散注意力和非分布驾驶任务之间的最佳窗口。这项研究表明,PDC连接性估计器可以为驾驶员分心提供更好的分类精度。
摘要 在本研究中,我们提出了聊天机器人与人工智能交互 (CI-AI) 框架,作为一种训练基于转换器的聊天机器人类架构的方法,用于任务分类,重点是人与机器的自然交互,而不是界面、代码或正式命令。智能系统通过人工释义来增强人类来源的数据,以便为自然语言处理 (NLP) 的进一步经典、注意力和基于语言转换的学习方法生成大量训练数据。要求人类释义命令和问题以进行任务识别,从而进一步执行算法作为技能。命令和问题分为训练集和验证集。共记录了 483 个回复。其次,训练集由 T5 模型释义,以便用进一步的数据进行扩充。在对训练数据进行两个时期的微调后,对七种最先进的基于 Transformer 的文本分类算法(BERT、DistilBERT、RoBERTa、DistilRoBERTa、XLM、XLM-RoBERTa 和 XLNet)进行了基准测试。我们发现,当训练数据通过 T5 模型增强时,所有模型都得到了改进,分类准确率平均提高了 4.01%。最好的结果是在 T5 增强数据上训练的 RoBERTa 模型,其分类准确率达到了 98.96%。最后,我们发现,通过输出标签预测的逻辑回归,五个表现最佳的 Transformer 模型的集合在人类反应数据集上的准确率达到了 99.59%。高性能模型允许智能系统通过类似聊天机器人的界面在社交互动层面解释人类命令(例如“机器人,我们可以聊天吗?”),并允许非技术用户更好地访问人工智能。
简介:瞳孔测量,眼瞳直径的测量,是一种公认的客观形态,与认知工作量相关。在本文中,我们分析了超声成像算子的瞳孔响应,以评估其认知工作量,并在进行常规的胎儿超声检查时被捕获。我们的实验和分析是在自然临床环境条件下使用远程眼球跟踪获得的现实世界数据集进行的。方法:我们的分析管道涉及仔细的时间序列(时间序列)提取,通过回顾性将瞳孔直径数据与在多模态数据采集设置中相应的超声扫描视频中捕获的任务匹配。接下来是学生直径预处理和PU胎儿反应序列的计算。对操作员瞳孔响应(胎儿心脏与胎儿大脑)与操作员专业知识(新资格的与经验丰富的操作员)之间分布的探索性统计分析进行了比较。机器学习将被探索以将时间序列自动分类为具有经典(浅层)模型的时间,频谱和时频特征,并将其经验分类为相应的超声处理任务和操作员体验,以及卷积神经网络作为深度学习模型。结果:提取的瞳孔响应的初步统计分析显示,不同的超声任务和操作员专业知识的显着差异,表明每种情况下的认知工作量不同,如通过划分测量。对于超声检查任务分类和操作员经验分类,曲线(AUC)值(AUC)值(AUC)值分别为0.98和0.80,在曲线(AUC)值(AUC)值下实现了接收器的操作。结论:我们得出结论,我们可以在超声操作员执行常规扫描时成功地评估瞳孔直径变化的认知工作量。机器学习允许使用瞳孔响应序列作为操作员的认知工作量的索引来歧视执行的超声检查任务和扫描专业知识。高认知工作量可以降低操作员的效率并限制其决策,因此,客观评估认知工作量的能力是迈出这些对运营商在生物医学应用(例如医学成像等生物医学应用中)产生影响的第一步。
•具有更大的灵活性,这是任务类别的函数(对V类的最高灵活性),但更依赖承包商的内部流程,对文档的更简化和所需的报告,以ESA给出的知名度较低,责任降低,责任和风险的代价较低,并给予行业