摘要:基于 CRISPR − Cas9 的“基因驱动”技术已被提议作为一种新颖且有效的控制蚊子传播的人类疾病的方法。然而,需要比迄今为止展示的更复杂的设计以及构建它们的扩展分子工具箱以克服抗药性形成/进化和驱动空间/时间限制的问题。预见到这种需求,我们使用三种与疾病相关的库蚊细胞系(埃及伊蚊、白纹伊蚊和致倦库蚊)评估了 33 种系统发育不同的昆虫聚合酶 III 启动子的 sgRNA 转录活性。我们表明 U6 启动子可在具有一系列转录活性水平的物种中发挥作用,并且发现 7SK 启动子由于其广泛的系统发育活性而特别有前景。我们进一步表明,U6 启动子可以被大幅截短而不会影响转录水平。这些结果对于参与开发下一代基因驱动的研究人员将具有重要意义。关键词:聚合酶 III、Cas9、U6 启动子、7SK 启动子、基因驱动、蚊子
登革热的当前流行病学状况和免疫学特异性 登革热是由黄病毒科节肢动物传播的病毒(虫媒病毒)引起的,在大多数热带和亚热带国家都有发现。它通过埃及伊蚊雌蚊叮咬传播,在较小程度上也通过白纹伊蚊传播。过去几十年来,全球发病率逐渐上升,2023 年报告病例数为 500 万例。(1)血清流行率随年龄不同而不同,也随世界不同地区不同而不同,甚至在同一个国家内也存在差异。大多数病例发生在南亚、东南亚和拉丁美洲。然而,由于潜在病媒物种的传播(瑞士也有)、人口流动以及全球变暖的影响,流行病学正在发生变化,非洲登革热病例增加,北美和南欧出现本土登革热病例。(2,3)除了发病率的社会经济影响外,登革热还被认为是亚洲儿童死亡的主要原因之一。前往流行地区的旅行者感染登革热的负担很低,但并非微不足道,因为它是从撒哈拉以南非洲以外(亚)热带地区旅行回来后发烧的主要原因。(4)
与物理和化学合成相比,使用绿色还原提取物进行 ZnONPs 生物合成是一种简便、环保的方法。本研究首次利用薰衣草叶提取物合成 ZnONPs。采用紫外-可见光谱、PXRD、FESEM、EDAX 和 FTIR 等技术对 ZnONPs 进行表征。将 ZnONPs 以 80mg/L 至 160mg/L 的剂量依赖性方式暴露于登革热病原体白纹伊蚊 24 小时。在 346 nm 处发现紫外-可见吸收峰,证实了 ZnONPs 的生物合成。FESEM 结果表明,ZnONPs 以截角八面体形态的聚集体形式形成。平均粒径为 74.58 nm。 PXRD 分析表明 ZnONPs 本质上是结晶的。FTIR 分析表明,酚类、醇类和胺类等不同的功能基团参与了 ZnONPs 的合成。ZnONPs 在用 A. albopictus 的四龄幼虫处理后表现出显著的杀蚊幼虫活性。暴露 24 小时后,ZnONPs 在浓度为 160mg/L 时表现出 100% 的死亡率,LC50 值为 118mg/L,LC90 值为 135mg/L。基于这些结果,我们强烈建议将截角八面体形状的 L. angustifolia ZnONPs 用作对抗蚊媒疾病和害虫管理的强效生物医学药剂。
在其未成熟的生命阶段(鸡蛋,幼虫和pa)中检查水容器和植物中的蚊子。常见的蚊子育种来源包括花盆碟,轮胎,儿童游泳池,水,容器或水桶中的生根植物以及宠物水碗。成年蚊子咬人和动物,因此它们倾向于靠近房屋或附近的树林。艾德(Aedes)白phopictus和伊蚊都是白天的比特斯。
黄热病 (YF) 疫情持续,已蔓延至新地区,威胁着南美洲和非洲的大量人口。预测疫情可能发生的地点必须考虑当地蚊子种群和特定的 YF 病毒株,以及生态气候条件、社会政治和人口因素(包括人口规模、密度和流动性)以及疫苗覆盖率。不同地区的埃及伊蚊和白纹伊蚊种群对 YF 病毒的易感性和传播能力各不相同。YF 病毒目前无法消除,因为该病毒在动物宿主中传播,但广泛使用疫苗可以消除人类疾病。世卫组织 EYE(消除黄热病流行病)是一项控制 YF 的受欢迎计划,其战略将于 2017 年至 2026 年实施:扩大 YF 疫苗的使用,防止国际传播,并迅速遏制疫情。YF 疫苗接种是控制 YF 疫情的主要手段,但全球供应不足。因此,提出了剂量节约策略,包括分次给药和皮内给药。分次给药已有效地用于控制疫情,但目前不符合《国际卫生条例》;国际旅行需要特殊文件。媒介控制是预防黄热病疫情的另一个方面,目前正在考虑和提出新方法。
• 临床表现 — — 急性发热性疾病 (AFI) 至出血热 • 登革热的轻微症状可能与导致 AFI 的其他疾病混淆,无论是否伴有皮疹 • 登革热病毒 (DENV) 的地理分布 — — 赤道带(中美洲和南美洲、非洲、东南亚和太平洋岛屿) • DENV 的地理分布与其他蚊媒病毒(ZIKV、YFV、CHIKV)和蚊媒热带疾病(疟疾)重叠 • 世界上几乎一半的人口,约 40 亿人,生活在有登革热风险的地区。它通常是流行地区的主要疾病原因。它在许多热门旅游目的地很常见。在美国,在气候炎热潮湿、有埃及伊蚊和白纹伊蚊的州,DENV 的有限传播导致登革热本土病例定期发生。 • 登革热可从发热期(症状出现、病毒血症高峰期~第 1 天)迅速发展到危急期(3-6 天内),随着病毒血症的减少,退热会出现严重疾病的警告信号;因此,在发热期使用潜在抗病毒药物最有效,并且应重点关注 PrEP。• 继发性登革热感染会增加严重疾病的风险,而后续感染则会降低。• 诊断 - 首选 NAAT(PCR),但受病毒血症的限制;血清学检测与相关黄病毒(最明显的是寨卡病毒)有交叉反应。诊断测试在高危地区广泛可用,但结果可能需要几天时间,限制了治疗窗口。
属于伊蚊属的毒性昆虫是病毒和丝状病原体的载体。Ades bopotus是一个越来越重要的向量,因为它在全球范围内的迅速扩展。在全球气候变化和人畜共患疾病的出现的背景下,需要使用现场应用的识别工具来加强对具有医疗兴趣的节肢动物的昆虫学调查的努力。大规模的蚊子对蚊子的主动调查需要熟练的技术人员和/或昂贵的技术设备,这使大量命名物种更加困惑。在这项研究中,我们通过利用机翼干涉模式显示的特定物种标记来开发出一种伊蚊物种的自动分类系统。保留494个24 Aedes spp的显微照片的数据库。记录了十多张图片的人经历了一种深入的学习方法,以训练卷积神经网络并测试其在属,亚属和物种分类学水平上对样本进行分类的准确性。我们在属水平上记录了95%的准确性,在三个测试的亚属中,两种(ochlerotatus and stegomyia)的准确性> 85%。最后,将8个精确地分类为10个Aedes sp。经历了总体准确性> 70%的培训过程。总的来说,这些结果证明了这种方法对艾德斯物种识别的潜力,并将代表未来实施大规模昆虫学调查的工具。
摘要 寨卡病毒 (ZIKV) 传播的主要途径是通过被感染的埃及伊蚊叮咬,当蚊子在吸血期间叮咬脊椎动物宿主的皮肤时就会叮咬宿主。病毒颗粒与蚊子唾液和其他成分的复杂混合物一起注入叮咬部位。其中一些病毒已知在增强宿主的虫媒病毒感染方面起着关键作用,导致病毒血症和/或发病率增加。在临床前动物模型中测试候选疫苗时,通常不会考虑这种媒介衍生的感染贡献。在本研究中,我们使用亚洲和非洲寨卡病毒谱系在蚊子-小鼠传播模型中对一种有希望的寨卡病毒候选疫苗进行了临床前验证。小鼠接种了经过工程改造的寨卡病毒样颗粒,随后通过感染寨卡病毒的埃及伊蚊叮咬进行感染。尽管与通过传统针头注射感染的小鼠相比,蚊子感染的小鼠病毒血症略有增加,但疫苗保护了动物免于患病,并大大降低了病毒血症。此外,在病毒血症高峰期,允许幼稚蚊子以受感染的接种和未接种疫苗的小鼠为食。我们对蚊子病毒滴度的分析表明,疫苗能够抑制病毒从宿主传播到媒介。
并非所有细菌都会对社会产生负面影响。这种细菌可以阻止登革热的媒介埃及伊蚊传播疾病。在发表这一令国家振奋的消息时,刊物出现了错误,细菌名称被模糊化了。通过联系奥斯瓦尔多·克鲁兹基金会 (Fiocruz),可以获得这种细菌的蛋白质的 DNA 序列,以帮助识别它。利用收到的 DNA 序列,发现哪种细菌可以阻止蚊子传播疾病,以及 Fiocruz 提供了哪种蛋白质来进行识别。在此处访问获得的 DNA 序列。
黄病毒属包括几种人类致病病毒,例如登革热、黄热病、寨卡病毒、日本脑炎病毒和西尼罗病毒,它们可以在节肢动物(蚊子)中垂直传播。已经设计了几种旨在摧毁蚊子总体数量的干预措施。但从长远来看,这些措施可能会产生严重的生态影响。这一限制要求制定更好、更安全的策略,这些策略需要对黄病毒-宿主相互作用有基本的了解。我们希望应用全基因组 CRISPR 筛选来解码伊蚊宿主的泛黄病毒因子。