以12个步骤实现了胞嘧啶分子的优化结构,其优化能为-10749.84 eV。4.94 eV的Homo-Lumo能隙表示化学稳定性。氧原子表现出最负电位,氢原子显示出最积极的电位。状态的密度揭示了4.92 eV的能隙,确认了等效轨道能级。计算出的硬度(2.47 eV)和柔软度(0.41 eV -1)表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。3.19 eV的亲电指数表示强烈的亲电行为。Mulliken电荷分析鉴定H13具有最高的正电荷和最高负电荷的N5。振动分析显示,在3100-3300 cm -1,N-H处的C-H振动为3500-3700 cm -1,而C = O时为1771.10 cm -1。热力学特性,例如热容量,内部能量,焓和熵随温度的增加,而Gibbs自由能降低。
胞嘧啶分子的结构优化通过12步实现,优化能量为-10749.84 eV。4.94 eV的HOMO-LUMO能隙表明化学稳定性。氧原子表现出最负的电势,氢原子表现出最正的电势。态密度显示能隙为4.92 eV,证实了等效轨道能级。计算的硬度(2.47 eV)和柔软度(0.41 eV -1 )表明稳定性和极化性。化学势为-3.97 eV,电负性为3.97 eV。亲电指数为3.19 eV,表明亲电行为强。Mulliken电荷分析确定H13具有最高的正电荷,N5具有最高的负电荷。振动分析表明CH振动在3100-3300cm -1 ,NH在3500-3700cm -1 ,C=O振动在1771.10cm -1 。热力学性质如热容量、内能、焓和熵随温度的升高而增大,而吉布斯自由能则降低。
复合材料结构可以显著降低客机的重量。然而,增加的生产成本需要应用具有成本效益的设计策略。因此,需要一个比较值,用于评估设计方案的成本和重量。直接运营成本 (DOC) 可用作此比较值;它捕获了飞机飞行时产生的所有成本。在本文中,提出了一种复合材料结构的成本/重量优化框架。它考虑了制造成本、无损检测成本和基于飞机重量的终生燃油消耗,因此使用简化版本的 DOC 作为目标函数。首先,解释飞机设计的不同阶段。然后重点讨论复合结构的优点和缺点、设计约束和允许值以及无损检测。此外,还讨论了多目标优化和成本与重量的综合优化等主题。制造成本可以通过不同的技术来估算;在这里,基于特征的成本估算和参数成本估算被证明最适合所提出的框架。最后,对所附论文进行了简要总结。第一篇论文包含一项参数研究,其中针对一系列成本/重量比(重量损失)和材料配置优化了蒙皮/纵梁面板。重量损失定义为特定的终生燃油消耗,取决于飞机的燃油消耗、燃油价格和优化器的观点。结论是,设计方案的理想选择既不是低成本也不是低重量,而是两者的结合。第二篇论文提出在部件的设计过程中纳入无损检测成本,并根据检测参数调整每个层压板的设计强度。因此,超声波检测的扫描间距被视为一个变量,代表(保证的)层压板质量的指标。结果表明,在早期设计阶段分配和调整层压板的质量水平可以降低直接运营成本。