大脑连接非常精确,但大多数神经元一旦有机会就会与错误的伙伴形成突触。动态轴突-树突定位可以限制突触形成相遇,但发育中的大脑中时空相互作用动力学及其调节仍然基本未知。在这里,我们表明轴突伪足的动力学限制了突触形成和伙伴选择,而这些神经元原本不会被阻止形成错误的突触。利用 4D 成像技术对发育中的果蝇大脑进行研究,我们发现伪足动力学受自噬调控,自噬是一种普遍的降解机制,其在大脑发育中的作用仍不太清楚。自噬体以令人惊讶的特殊性在突触形成伪足中形成,随后伪足崩塌。计算建模和遗传实验表明,突触构建材料的自噬降解改变定量调节突触形成。伪足稳定性的增加导致错误的突触伙伴关系。因此,自噬通过动力学排除过程来限制不适当的伴侣选择,这对于连接特异性至关重要。
摘要 胶质母细胞瘤 (GBM) 是成人中最常见的原发性中枢神经系统肿瘤。GBM 的致命性在于其高度侵袭性、浸润性和神经破坏性,导致治疗失败、肿瘤复发和死亡。即使采用目前的手术、放疗和化疗等标准治疗方法,存活的肿瘤细胞也会侵入整个大脑。我们之前已经表明,这种侵袭性表型是由富含肌动蛋白的膜基结构(称为侵袭性伪足)促成的。在经治疗后存活下来的 GBM 细胞中,侵袭性伪足的形成和基质降解活性增强。药物再利用提供了一种识别现有药物新治疗应用的方法,而无需发现或开发以及相关的临床实施时间。我们研究了几种 FDA 批准的药物,因为它们既可以作为降低细胞活力的细胞毒性药物,也可以作为 GBM 细胞系中的“抗侵袭性伪足”药物。根据细胞毒性特征,我们选择了三种药物,即硼替佐米、依维莫司和氟达拉滨,以测试它们对 GBM 细胞侵袭的影响。这三种药物除了降低 GBM 细胞活力外,还降低了辐射/替莫唑胺诱导的侵袭性足活动。这些药物表现出有效的特性,值得进一步研究,并有可能作为 GBM 治疗方案的一部分实施。
摘要 SCAR/WAVE 蛋白和 Arp2/3 复合物在前缘组装分支肌动蛋白网络。SCAR/WAVE 的两种亚型 WAVE1 和 WAVE2 位于前缘,但它们是否发挥相似或不同的作用仍不清楚。此外,关于 WAVE1 对肌动蛋白丝伸长的 Arp2/3 独立生化活性的报道存在矛盾。为了在体内研究这一点,我们在 B16-F1 黑色素瘤细胞中分别和同时敲除 WAVE1 和 WAVE2 基因。我们证明 WAVE1 和 WAVE2 对于板状伪足的形成和运动是多余的。然而,WAVE2 KO 细胞的前缘肌动蛋白延伸率显著降低,而 WAVE1 KO 细胞的前缘肌动蛋白延伸率增加。WAVE1 KO 细胞中肌动蛋白延伸率的加快被更快的逆向流动所抵消,因此不会转化为更快的板状伪足突出。因此,WAVE1 限制了前缘肌动蛋白延伸的速度,并似乎将肌动蛋白网络与膜偶联以驱动突出。总体而言,这些结果表明 WAVE1 和 WAVE2 在促进 Arp2/3 依赖性肌动蛋白成核和板状伪足形成方面具有冗余作用,但在控制肌动蛋白网络延伸和利用网络生长进行细胞突出方面具有不同的作用。
单个 TBX1 拷贝的丢失是 22q11.2 缺失综合征大部分临床体征和症状的根源,22q11.2 缺失综合征是一种常见的遗传性疾病,以多种先天性异常和脑相关临床问题为特征,其中一些可能与血管有关。Tbx1 突变小鼠有脑血管异常,因此使其成为了解人类疾病的有用模型。在这里,我们发现 TBX1 在小鼠脑中的主要形态发生功能是通过调节 Vegfr3 来抑制血管分支形态发生。我们证明,在 Tbx1 突变背景下,使 Tbx1 表达域中的 Vegfr3 失活可增强脑血管分支和伪足形成,而增加该域中的 Vegfr3 表达则完全挽救了这些表型。使用内皮小管生成的体外模型也获得了类似的结果。总体而言,该研究结果提供了遗传证据,表明 VEGFR3 是小鼠脑内早期血管分支和丝状伪足形成的调节器,并且可能是 Tbx1 功能丧失导致的脑血管表型的介质。
摘要 最近对黑色素瘤的基因组和 scRNA-seq 分析表明,转移缺乏复发的遗传驱动因素,同时确定了与侵袭或耐药性相关的常见转录状态。为了测试转录适应是否可以驱动黑色素瘤进展,我们使用了斑马鱼 mitfa:BRAFV600E;tp53-/- 模型,其中恶性进展的特征是遗传进化最少。我们对 80 种表观遗传/转录调节因子进行了过表达筛选,发现神经嵴间充质发育调节因子 SATB2 可加速侵袭性黑色素瘤的发展。它的过表达会诱导斑马鱼肿瘤和人类黑色素瘤细胞系中的侵袭性伪足形成和侵袭。SATB2 结合并激活神经嵴调节因子,包括 pdgfab 和 snai2。 SATB2 诱导的转录程序与已知的 MITF 低 AXL 高和 AQP1 + NGFR1 高耐药状态重叠,并在体内功能上驱动增强的肿瘤增殖和对维莫非尼的耐药性。总之,我们表明 SATB2 将黑色素瘤转录重连为神经嵴间充质样程序,可驱动原发性肿瘤的侵袭和耐药性。
近年来,肿瘤学新药的开发取得了显著进展。特别是,药物开发已从活性细胞毒性化合物的经验筛选转变为阻断驱动癌症进展和转移的特定生物途径的分子靶向药物。通过合理的设计方法,我们的团队开发了 1A-116 作为一种有前途的 Rac1 抑制剂,在几种类型的癌症中具有抗肿瘤和抗转移作用。Rac1 在多种肿瘤类型中过度激活,它是 Rho GTPase 家族中研究最多的蛋白质之一。它在肌动蛋白细胞骨架重组中的作用对内吞作用、囊泡运输、细胞周期进程和细胞迁移有影响。在这种情况下,Rac1 的调节活性影响癌症过程中的几个关键过程,包括侵袭和转移。这项临床前研究的目的是重点研究 1A-116 的作用方式,采用跨学科方法,使用计算机生物信息学工具和体外测定。在这里,我们证明色氨酸 56 残基对于 1A-116 的抑制作用是必需的,因为这种化合物会干扰涉及几种 GEF 激活剂的 Rac1GTPase 蛋白质-蛋白质相互作用 (PPI)。1A-116 还能够抑制致癌 Rac1 P29S 突变蛋白,这是在日光暴露黑色素瘤中发现的致癌驱动因素之一。它还抑制许多 Rac1 调节的细胞过程,例如膜皱褶和板状伪足形成。这些结果加深了我们对 1A-116 对 Rac1 的抑制及其对癌症进展的生物学影响的了解。它们也是一个很好的例子,说明计算机分析如何成为一种有价值的药物开发方法。
我们的方法利用非病原性大肠杆菌在递送和呈递抗原时模仿细胞内病原体的布鲁氏菌融合体来刺激TH1和CTL反应。大肠杆菌通常是细胞外的,而布鲁氏菌是细胞内细菌。因此,我们启动了大肠杆菌(DH5α),以表达含有耶尔森氏菌的INV基因的质粒,单核细胞增生李斯特氏菌的基因和HLY基因[31]。通过结合αβ1-整合素异二聚体来引入宿主细胞的大肠杆菌侵袭。整合素的聚类后,Inva-sin激活了信号级联。一种信号通路会导致局灶性粘附组分的激活,包括SRC,局灶性粘附激酶和细胞乳蛋白蛋白,导致形成伪足,使细菌吞噬细菌进入宿主细胞。侵入蛋白与β1-整合蛋白的结合是必要的,并且足以诱导细菌的吞噬,即使是非专业的吞噬细胞。第二个途径,包括Rac1,NF-κB的激活和有丝分裂原激活的蛋白激酶,导致促炎细胞因子的产生[32]。互隔化后,将大肠杆菌带入发生细菌裂解的吞噬体/溶酶体。HLY基因产物以及其他细菌蛋白被释放到乳胶囊泡中。硫酸激活的Hly,也称为李斯特氏蛋白酶O(LLO)是一种在低pH值下的结合和孔形吞噬体膜的孔形成细胞溶胶蛋白酶。此批判步骤将抗原从大肠杆菌出口到细胞质细菌的细胞质含量可以通过LLO产生的孔中逃脱到乳腺细胞的胞质区室。
相关性溶血磷脂酸 (LPA) 受体 (PubMed:9070858, PubMed:19306925, PubMed:25025571, PubMed:26091040)。在肌动蛋白细胞骨架重组、细胞迁移、分化和增殖中发挥作用,从而有助于对组织损伤和感染因子的反应。通过异源 G 蛋白的 G(i)/G(o)、G(12)/G(13) 和 G(q) 家族激活下游信号级联。信号抑制腺苷酸环化酶活性并降低细胞 cAMP 水平 (PubMed:26091040)。信号传导触发细胞质 Ca(2+) 水平的增加 (PubMed:19656035, PubMed:19733258, PubMed:26091040)。激活 RALA;这导致磷脂酶 C (PLC) 的激活和肌醇 1,4,5-三磷酸的形成 (PubMed:19306925)。信号传导介导下游 MAP 激酶的激活 (通过相似性)。有助于调节细胞形状。促进神经元细胞中肌动蛋白细胞骨架的 Rho 依赖性重组和神经突回缩 (PubMed:26091040)。促进 Rho 的激活和肌动蛋白应力纤维的形成 (PubMed:26091040)。通过激活 RAC1 促进迁移细胞前缘板状伪足的形成(通过相似性)。通过其作为溶血磷脂酸受体的功能,在趋化性和细胞迁移中发挥作用,包括对损伤和创伤的反应(PubMed:18066075,PubMed:19656035,PubMed:19733258)。通过与 CD14 相互作用,在引发对细菌脂多糖 (LPS) 的炎症反应中发挥作用。促进对溶血磷脂酸的细胞增殖。正常骨骼发育所必需的。可能在成骨细胞分化中发挥作用。正常大脑发育所必需的。成人齿状回中新形成的神经元正常增殖、存活和成熟所必需的。在疼痛感知和神经性疼痛的引发中发挥作用(通过相似性)。