如果我们看不到它们,我们怎么知道它们就在那里?黑洞——顾名思义——是无法直接看到的。找到黑洞的唯一方法是寻找它对周围空间中其他物体的影响。观察气体喷流、辐射、快速旋转的物体和其他方法可用于间接探测黑洞的位置。天文学家已经通过这种方式观察到了我们自己星系中数十个黑洞的证据。研究黑洞的科学家专注于观察周围空间中其他物体如何受到影响。定位黑洞的第一种方法是观察双星系统。在这些系统中,两颗恒星相互绕行,由于恒星之间的引力,它们的运动方式通常可以预测。科学家们知道,如果他们看到一颗恒星像附近有一个巨大的物体一样移动,但没有其他恒星的迹象,那么它的隐形伴星可能就是黑洞。科学家还意识到,如果双星系统中的不可见物体是黑洞,那么它会产生巨大的引力。可见恒星的气体(或任何附近的气体和尘埃)会以极高的速度绕黑洞旋转,然后消失在黑洞中。这一过程会产生巨大的热量和 X 射线辐射,可以通过观测检测到。20 世纪 70 年代,科学家对伽马射线爆发产生了浓厚的兴趣,将其作为探测黑洞的一种方式。一种假设认为,由正常恒星和黑洞组成的双星系统在黑洞最终吞噬其伴星的所有物质时会产生伽马射线爆发。另一种被广泛接受的理论认为,黑洞或中子星碰撞时会释放伽马射线。当巨星坍缩并形成黑洞时,也可能释放伽马射线爆发
对感兴趣的目标(无论是轴外点源伴星还是扩展源内的单个空间分辨率元件)进行 CGI 线性偏振分数测量,都会受到不同杂散效应的困扰,需要通过设计进行校准或最小化。仪器偏振效应由端到端光学系统穆勒矩阵 (MM) 描述,如图 1 所示。穆勒矩阵描述了整个光学系统如何将非偏振光转换为偏振光,并修改源线性偏振分数及其方向。假设目标圆偏振分数可忽略不计(Vsky=0,对于所考虑的目标而言,这是一个有效的假设),并且鉴于罗马日冕仪仅测量线性偏振分数,必须确定 9 个 MM 系数才能将观测到的斯托克斯矢量转换为源真实斯托克斯矢量及其线性偏振分数的估计值。