当今使用的公钥加密方案依赖于某些数学问题的难解性,而这些问题已知可以通过大规模量子计算机有效解决。为了满足长期安全需求,NIST 于 2016 年启动了一个项目,旨在标准化后量子密码 (PQC) 原语,这些原语依赖于未知的量子计算机目标问题,例如格问题。然而,从传统密码分析的角度来看是安全的算法可能会受到旁道攻击。因此,NIST 重点评估候选算法对旁道攻击的抵抗力。本论文重点研究了两个 NIST PQC 候选方案 Saber 和 CRYSTALS-Kyber 密钥封装机制 (KEM) 对旁道攻击的敏感性。我们提供了九篇论文,其中八篇重点介绍 Saber 和 CRYSTALS-Kyber 的旁道分析,一篇演示了对 STM32 MCU 中集成的硬件随机数生成器 (RNG) 的被动旁道攻击。在前三篇论文中,我们演示了对 Saber 和 CRYSTALS-Kyber 的高阶掩码软件实现的攻击。主要贡献之一是单步深度学习消息恢复方法,该方法能够直接从掩码实现中恢复秘密,而无需明确提取随机掩码。另一个主要贡献是一种称为递归学习的新神经网络训练方法,该方法可以训练神经网络,该神经网络能够以高于 99% 的概率从高阶掩码实现中恢复消息位。在接下来的两篇论文中,我们表明,即使受一阶掩码和改组保护的 Saber 和 CRYSTALS-Kyber 软件实现也可能受到攻击。我们提出了两种消息恢复方法:基于 Hamming 权重和基于 Fisher-Yates (FY) 索引。这两种方法都可以成功恢复密钥,但后者使用的痕迹要少得多。此外,我们扩展了基于 ECC 的密钥
目前再生能源占比为20%,若要将再生能源占比提升至80%,更现实的做法是将电力需求降低至50%,并将再生能源发电量增加一倍,而非增加四倍。
该论文最初由美国进步中心发表,并于 2022 年 12 月 2 日至 3 日在 PERI 举行的“当今全球通货膨胀”会议中发表。如需完整的会议论文,请单击此处。
Weller Erem 切割机适用于全球应用,包括电子组装和医疗保健,经久耐用。使用 Weller Erem™ 感受与众不同 — 久经考验的选择。每次都如此。
组成和结构:荧光聚合物是氟化聚合物的一个独特子集,其特征在于纯碳聚合物主链,其氟原子直接附着在其上。同行审查的研究已经证明,非聚聚物是大,稳定的,稳定的惰性分子,这些分子并非溶于水(Henry等人。2018; Korzeniowski等。2022)。因此,它们太大了,无法越过生物膜,并且不会引起生物累积的问题。此外,泛聚物符合用于确定对人类健康或环境影响的低关注聚合物的标准。
tls从握手开始。让我们看一下握手的1.3版。客户端发送了一条Hello消息,其中包含其支持的密码。这包括可以处理的加密密码,签名算法和消息身份验证类型。在1.3版中,密钥交换始终是椭圆曲线diffie-hellman,客户端Hello消息将包含客户端的公共价值(我们在早期注释中称为A)。回复时,服务器发送了自己的Hello消息。这包含其对Diffie-Hellman的公共价值(早期注释中的B值)。服务器查看客户端发送的密码列表,选择它也支持的最强的密码,并在Hello消息中发送其选择。服务器目前还介绍其证书,客户端然后对其进行验证。
1 modpow(基本,指数,模量,宽度){2 biginteger r0,r1 = biginteger.one,base; 3 for(int i = 0; i
1. 引言在过去的二十年里,智能电网的概念一直是研究人员和能源政策制定者关注的焦点。根据 [1],智能电网是一个电力网络,允许设备在供应商和消费者之间进行通信,从而允许他们管理需求、保护配电网、节约能源和降低成本。目前大多数发达国家的电网基础设施都是基于半个多世纪以前的设计。这种旧的电网基础设施集中发电,并通过输配电网络将电力输送给消费者。这种旧电网迫切需要发展,以便能够融入新一代技术,特别是分布式能源 (DER)(例如可再生能源)、储能技术(例如插电式电动汽车)和微电网。新的智能电网技术,例如用于在各种设备之间传递信息的通信基础设施
摘要 - 在无线链路和低温量子平台中使用的CMOS集成式全双工(IBFD)操作,以前是使用空间 - 周期模式的相位非循环系统启用的无磁性循环器。在这一文献中,我们提出了一种替代且简单的集成电路方案,该方案不仅实现了IBFD操作所需的非重点信号交流,而且还可以通过完全消除任何芯片级传输(TX) - receive(RX)耦合来改善同盟性能。通过执行与反向传播的TX和RX信号进行方向/独立的单层边缘转换来启用上述函数,这与天线(ANT)频率相反,这与芯片TX和RX频率的偏差相反。这样的原理还扩大了隔离带宽,并启用了集成的接收器下降函数。作为概念的证明,使用65 nm的批量CMOS技术实现了3.4-4.6-GHz(30%的分数带宽)IBFD接口。在300 K时测得的TX-TO-RX隔离为32-51 dB,在4.2 K时为14-29 dB。在300 K时测得的TX-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-TO-RX插入损失为300 k,300 K,在300 K,1.9和2.0 dB时,在4.2 k,300 k。 分别。芯片的IBFD核心的面积为0.27 mm 2,在300 k和4.2 K.
摘要 — 旁道攻击利用非主要通道泄露的信息(例如功耗、电磁辐射或时间)从加密设备中提取敏感数据。在过去的三十年中,旁道分析已经发展成为一个成熟的研究领域,拥有成熟的方法来分析高级加密标准 (AES) 等标准加密算法。然而,旁道分析与形式化方法的结合仍然相对未被探索。在本文中,我们提出了一种将旁道分析与 SAT 相结合的 AES 混合攻击。我们将 AES 建模为 SAT 问题,并利用通过基于深度学习的功率分析提取的 S 盒输入和输出值的提示来解决它。在 ATXmega128D4 MCU 实现的 AES-128 上的实验结果表明,SAT 辅助方法可以在一小时内从与用于分析的设备不同的设备捕获的单个跟踪中一致地恢复完整的加密密钥。相比之下,如果没有 SAT 的协助,经过 26 小时的关键普查后,成功率仍然低于 80%。