摘要。风能和光伏发电等可再生能源具有动态特性,具有明显的间歇性、固有的随机性和有限的输出支持,对微电网系统的频率稳定性有重大影响。尽管研究仍在进行中,但对提高微电网频率稳定性的控制措施仍然缺乏全面的了解。本文通过总结国内外微电网频率稳定性控制策略的进展来解决这一空白。具体来说,它研究了微电网的运行状态和相关的频率稳定性问题,并阐述了保持频率稳定性的各种方法。本文提出了提高频率稳定性的创新控制措施,包括改进主从控制、下垂控制、锁相环和虚拟同步发电机 (VSG) 技术,特别是在孤岛模式和并网模式之间的转换期间。研究结果证明了这些增强控制策略在保持频率稳定性方面的有效性,并最后提出了该领域未来的研究方向。
摘要 - 大规模可再生能源整合会降低系统的惯性并限制频率调节。为了使频率稳定性提高,分配适当的频率端口来源对计划者构成了关键的挑战。在此内容中,我们提出了一个频率约束的协调计划模型的热单元,风电场和电池储能系统(BESS),以提供令人满意的频率支持。首先,使用同步发电机和网格连接的逆变器的动态响应来说明了修改的多机频率响应(MSFR)模型,该模型是用预设功率主管构建的。其次,频率变化(ROCOF)和频率响应功率被推论以构建频率约束。基于超平面拟合和数据分类的数据驱动的分段线性化(DDPWL)方法可用于线性化高度非线性频率响应功率。第三,将频率组合插入我们的计划模型中,而基于热力发生混合系统的协调操作的单位承诺。终于将提出的模型应用于IEEE RTS-79测试系统。结果证明了我们共同计划模型保持频率稳定性的有效性。
孤岛微电网中频率不稳定或振荡的主要原因是负载不稳定和分布式发电机组 (DGU) 的功率输出变化。可再生能源供电的孤岛微电网系统面临的一个重大挑战是保持频率稳定性。为了解决这个问题,本文设计了一种比例积分微分 (PID) 控制器。首先,通过结合各种 DGU 和飞轮储能系统 (FESS) 构建孤岛微电网模型。此外,考虑 FESS 和 DGU 的一阶传递函数,得到一个线性化传递函数。该传递函数进一步近似为一阶加时间延迟 (FOPTD) 形式,以设计高效且易于分析的 PID 控制策略。使用 Chien-Hrones-Reswick (CHR) 方法评估 PID 参数,用于设定点跟踪和 0% 和 20% 超调的负载扰动抑制。与其他讨论的调整方法相比,用于 20% 超调的负载扰动抑制的 CHR 方法成为首选。所讨论方法的有效性通过频率分析和瞬态响应得到证明,并通过实时模拟得到验证。此外,表格数据呈现了调整参数、时域规范和比较频率图,支持了所提出的调整方法对所提出的孤岛模型的 PID 控制设计的有效性。
现代电力系统正在见证可再生可变发电 (VG) 源的渗透率空前增长。太阳能光伏和风能等转换器接口 VG 的使用率不断提高,同时取代了传统的同步发电机 (SG),这给电网运营商在动态处理频率稳定性和调节方面带来了新的挑战。减少 SG 的数量,同时增加非同步、无惯性的转换器接口 VG,会降低电网的自然惯性,而这对于保持频率稳定性至关重要。为了解决惯性不足的问题,研究人员普遍建议对 VG 源或储能系统实施补充控制策略,以模拟自然惯性(虚拟惯性 (VI))。或者,VG 源可以在其最大功率点以下运行(卸载模式),从而提供备用裕度,在电力电子设备的帮助下,如果发生意外情况,可以快速部署备用裕度,以提供快速频率响应。本文回顾了文献中提出的解决低惯性问题以提高频率稳定性的最新解决方案。此外,它还重点介绍了 VI 大小和位置优化问题的公式化以及解决优化问题所采用的技术。最后,确定了需要进一步研究的文献空白。
全球对能源的需求将在今天和2040年中增长30%[1]。与最近的过去相比,增长率正在降低,但远非停止。同时,Horizon World人口预计将增加到90亿人口。需求增长既是人口增长又是人均消费量的增加:能源需求通常与财富和社会健康有关,因此其人均增加不应感到困扰。担心应该具有清洁能力来满足能量的需求。在国际能源机构(IEA)预见的新政策方案中,新的负载将在很大程度上由可再生能源(RES)供电,并且主要由Wind和PV供电。由于这些是不可编程的间歇来源,因此为电力系统安全带来了新的问题。电力系统需要保持生产和能源消费之间的稳定平衡。在交流系统中,电力网络的最常见类型,网格平衡的主要标记是频率的稳定性。频率必须具有准确对应于名义值的平均值(欧洲50 Hz,在美国60 Hz),并且始终保持尽可能接近此值。RES在电力网络中的较大份额由于其非编程性和预测错误的可能性而导致更多的不平衡。此外,作为风和PV发电机的基于逆变器的系统的升高会导致惯性损失,从而影响网络通过保持频率变化较小而对不平衡做出反应的能力。网络的惯性与直接由变压器直接连接的旋转涡轮机的整体质量成正比。因此,充满活力的情景进化将越来越受到所谓辅助服务的有效管理。辅助服务为保证电力网络的可靠操作提供了支持。
Casimir效应[1,2]是由于量子真空波动引起的中性物体的相互作用。对高级材料之间Casimir相互作用的研究是一个新的和有希望的研究领域[3]。一方面,这些材料的异常电子特性会对Casimir力产生有趣的影响。另一方面,Casimir实验的提高质量使它们成为探索材料本身的有用工具。dirac材料(在足够低的能量下遵守二级式dirac-type方程)为我们提供了一个量子场理论与凝结物质之间相互作用的示例。石墨烯是该家族的重要代表[4,5]。处理狄拉克材料是很自然的,可以通过清理的极化张量来描述与电磁场的相互作用,并使用此张量来计算Casimir相互作用。在石墨烯的情况下,在[6]和[7]中使用了这种方法,分别在零和非零温度下使用。值得注意的是,石墨烯的Casimir相互作用的极化张量方法是实验中唯一证实的方法[8-11]。所有真实材料都包含杂质。特定形式的杂质可能会有所不同。杂质是指破坏原始材料清洁度的一般形式。在评论[12-15]中可以找到石墨烯样材料中杂质和缺陷的分类。石墨烯的二维性质减少了可能的缺陷和杂质类型的数量。因此,我们不会尝试关键是,它在居住在石墨烯表面外面的ADATOM或替代杂质在能量上有利。可能会被充电[16-18],磁[15],同位素[19,20],拓扑结构(例如五角大州和七肠)[13,21],或者是缺陷和生长诱发的缺陷等缺陷[22]和群集缺陷[12]。有意的杂质通常称为掺杂剂,而杂质本身可以是故意的,也是无意的(意外)。掺杂用于改变材料的物理或化学特性。石墨烯中的杂质[23,24]可能会将狄拉克附近的线性分散体转换为二次的杂质,这表示杂质引起的质量间隙的外观。描述杂质及其对材料物理特性的影响有不同的方法。常见是具有射击或远程电位[13]和散射方法[25,26]的紧密结合模型。使用石墨烯中的各种杂质类型,我们需要一个良好的模型,该模型可以捕获杂质的通用特性,同时非常简单地用于计算偏振张量。一种成功描述杂质的方法在于将准粒子的传播器添加到描述杂质散射率的参数γ。换句话说,γ是fermion自能的虚构部分。在[27 - 31]中的外部磁场存在大多数情况下,这种描述已应用于石墨烯。我们将自己限制在零温度和消失的化学潜力的情况下。[31]的计算与石墨烯中巨型法拉第旋转的测量[32]非常吻合。原则上γ可以取决于频率,尽管保持频率似乎是一个良好的近似值。在这项工作中,我们忽略了杂质的另一个作用,这是它们产生非零化学势µ的能力。在[10,11]中考虑了石墨烯表面上原子(主要是钠)的一种特殊形式的杂质(主要是钠)及其对Casimir力的影响。根据这些论文,这种杂质会导致石墨烯的质量间隙和非零化学潜力,而不是通过散射速率γ描述的杂质散射的出现。本文的主要目标是研究杂质散射速率γ对石墨烯与理想金属之间Casimir相互作用以及两个石墨烯片之间的影响。这是一个简化的设置。