磁电机下降显示模式 任一磁电机信号丢失都会导致 P-1000 开启相应的状态指示器,记住信号丢失时的发动机转速,并显示因磁电机丢失而导致的发动机转速下降。当此功能与点火开关结合使用时,可以轻松准确地执行飞行前磁电机性能测试或“磁电机下降”。在此操作模式下,LCD 应显示一个小的 RPM 数字,通常前面有一个减号(“-”),表示发动机减速。没有减号的显示表示发动机速度已增加。如果信号丢失持续超过十五秒,P-100 将恢复显示发动机转速,该转速由剩余的磁电机决定。
移动性:自主性、稳健性、紧凑性、速度、自由度、易用性……低成本、可集成的导航,能够抵御 GPS 信号丢失,适用于弹药、无人机和机器人、建筑物内的战斗机……
RPAS 操作员必须有一份记录在案的程序,用于处理每次飞行的执行。该文件应描述飞行的执行情况,包括操作区域、空域考虑、起飞和着陆点、航路点、广播要求、电力/燃料储备等信息,并且必须考虑计划内和计划外的情况,例如动力装置故障、链接/通信/GPS 信号丢失、与入侵飞机或鸟类发生冲突等。操作员应考虑使用书面清单来规划和操作 RPAS 任务。
概述 ................................................................................................................................87 缺陷一 – 自动驾驶员和飞行指引器(AFDS)信号丢失 ......................................................................................87 结论 ................................................................................................................................87 建议 ................................................................................................................................88 缺陷二 – 自动飞行控制系统(AFCS)脱离 .............................................................................................89 结论 ................................................................................................................................89 正常脱离 .............................................................................................................................89 非正常脱离 .............................................................................................................................90 建议 .............................................................................................................................................91 正常脱离 .............................................................................................................................91 非正常脱离 .............................................................................................................................91 缺陷三 – 未选择的进近指导 .............................................................................................................92 结论 .............................................................................................................................................92建议................................................................................................................................93 缺陷四 – 自动驾驶员和飞行指引系统 (AFDS) 的耦合与非耦合状态.....................................................................................93 结论......................................................................................................................93 建议......................................................................................................................94 总结......................................................................................................................95
系统集成简便,运行可靠 Cambridge Technology 伺服装置集成了全面的状态监控和系统调节电路,这些电路部署在通电、断电和所有大小移动过程中,以确保一致可靠的系统控制并防止潜在的系统损坏。对于系统调试和与其他硬件的集成,伺服装置提供位置、速度和错误输出信号。检测到几种错误状态,包括位置过高、RMS 功率过大、位置检测器信号丢失和功率丢失。如果检测到故障,电子设备将立即发出故障信号并以安全可控的方式关闭定位系统。
使用 COFDM,每个载波频率的符号率要低得多,大约每秒 850 个符号。这意味着符号的物理间距约为 350kM,而不是 50 米。反射信号要干扰当前信号,就需要一个额外路径长度为 350 公里的幽灵,在悉尼,这意味着它需要从纽卡斯尔附近某个建筑物上反弹!每个 COFDM 载波实际上都是一个单独的无线电发射器,在较低的音频范围内调制。多径接收(重影)会使模拟电视几乎无法观看,但对 DVB-T 没有任何影响。这种情况非常类似于在汽车收音机上接收 AM;即使在高速行驶时,AM 也很少发生信号丢失。
2. QC 样品 — 通常是该批次研究样品的混合样品,理想情况下结合同位素标记的代谢物混合物(例如 CIL 的 QReSS 混合物 25 ),每 8-10 个研究样品后运行一次。使用混合 QC 样品的主要优势在于,它能够评估所研究的每种代谢物的保留时间和信号稳定性(图 6)。对于大批次,在运行过程中观察到一些信号丢失并不罕见,QC 样品数据可用于有效地应用信号校正算法。还建议在运行开始时运行 QC 样品稀释系列,例如未稀释、2 倍稀释、4 倍稀释和 8 倍稀释。这有助于确认所研究代谢物的线性响应。
对于 COFDM,每个载波频率的符号率要低得多,大约每秒 850 个符号。这意味着符号之间的物理间隔约为 350 公里,而不是 50 米。反射信号要干扰当前信号,就需要一个额外路径长度为 350 公里的幽灵,在悉尼,这意味着它需要从纽卡斯尔附近某处的建筑上反射回来!每个 COFDM 载波实际上都是一个独立的无线电发射器,在较低的音频范围内调制。多径接收(重影)会使模拟电视几乎无法观看,但对 DVB-T 没有任何影响。这种情况非常类似于在汽车收音机上接收 AM;即使在高速行驶时,AM 也很少发生信号丢失。
在血氧水平依赖性 (BOLD) 对比度的功能性磁共振成像 (fMRI) 中,梯度回忆回波 (GRE) 采集具有高灵敏度,但会遭受磁化引起的信号丢失,并且缺乏对微血管的特异性。相反,自旋回波 (SE) 采集以降低灵敏度为代价提供了更高的特异性。本研究引入了非对称自旋回波多回波平面成像 (ASEME-EPI),该技术旨在结合 GRE 和 SE 的优点,用于高场临床前 fMRI。ASEME-EPI 采用自旋回波读数,然后是两个非对称自旋回波 (ASE) GRE 读数,提供初始 T2 加权 SE 图像和后续 T2 ∗ 加权 ASE 图像。在 9.4 T 临床前 MRI 系统上实施了该技术的可行性研究,并使用北方树鼩的视觉刺激进行了测试。将 ASEME-EPI 与传统 GRE 回波平面成像 (GRE-EPI) 和 SE 回波平面成像 (SE-EPI) 采集进行比较,结果表明,ASEME-EPI 实现了与 GRE-EPI 相当的 BOLD 对比噪声比 (CNR),同时在激活图中提供了更高的特异性。ASEME-EPI 激活更多地局限于初级视觉皮层 (V1),而 GRE-EPI 则显示激活超出了解剖边界。此外,ASEME-EPI 还展示了在 GRE-EPI 遭受信号丢失的严重场不均匀区域中恢复信号的能力。ASEME-EPI 的性能归因于其多回波特性,允许 SNR 优化的回波组合,从而有效地对数据进行去噪。初始 SE 的加入也有助于在易受敏感伪影影响的区域恢复信号。这项可行性研究证明了 ASEME-EPI 在高场临床前 fMRI 中的潜力,在解决高场强下 T2 ∗ 衰减的挑战的同时,在 GRE 敏感性和 SE 特异性之间提供了一种有希望的折衷方案。