摘要 在人工智能的发展趋势下,生物识别已成为一种广泛应用的热门技术,在金融、非营利组织、海关等各种场合均有应用,但传统的身份识别工具存在易被泄露、窃取或遭受黑客攻击的风险。脑电图(EEG)是生物识别研究的一种方法,它通过采集头皮特定位置的电磁波来反映个体的脑部活动,大量研究证明脑电图中的α波段可以区分个体差异,其重要性在临床神经生理中也得到了证实。在脑电生物识别中,大多数研究使用复杂的电极通道来覆盖整个头部来收集脑电波记录,但这样的设备无法满足生物识别应用对可采集性的要求。
早期生活逆境 (ELA) 给全球带来了沉重负担。世界卫生组织估计,ELA 占所有精神病病例的近 30%。然而,我们仍然无法确定哪些接触过 ELA 的人会患上精神疾病,因此迫切需要确定潜在的途径和机制。本综述提出,不可预测性是 ELA 中一个研究不足但易于处理的方面,并提出了一个概念模型,其中包括不可预测性影响发育中大脑的生物学上合理的机制途径。该模型得到了已发表和新数据的综合支持,这些数据说明了信号模式对儿童发育的重大影响。我们首先概述现有的不可预测性文献,这些文献主要关注较长的不可预测性模式(例如年、月和天)。然后,我们描述了我们的工作,测试了父母信号模式对瞬间时间尺度的影响,提供了证据,表明这些信号在发育的敏感窗口期间的模式会影响跨物种的神经回路形成,因此可能是一个塑造发育大脑的进化保守过程。接下来,我们将关注新兴主题,这些主题为未来的研究方向提供了一个框架,包括评估可能特别容易受到不可预测性、敏感期、性别差异、跨文化调查、解决因果关系和不可预测性等功能的影响,这些功能可能是其他形式的 ELA 影响发展的途径。最后,我们提出了预防和干预的建议,包括引入一种筛查工具来识别经历过不可预测经历的儿童。关键词:不可预测性;发展;早年逆境;跨物种;情绪;养育;熵;神经发育;精神病理学。
我们研究了当使用双模压缩真空态作为探针时,在损耗传感中的量子优势。在 PRX 4, 011049 中进行实验演示后,我们考虑了一种量子方案,其中信号模式通过目标,并在测量之前将热噪声引入闲置模式。我们考虑了两种具有实际意义的检测策略:巧合计数和强度差异测量,它们广泛用于量子传感和成像实验。通过计算信噪比,我们验证了即使在强热背景噪声下量子优势仍然存在,而经典方案使用直接受到热噪声影响的单模相干态。这种稳健性来自这样一个事实:在经典方案中信号模式受到热噪声的影响,而在量子方案中闲置模式受到热噪声的影响。为了进行更公平的比较,我们进一步研究了一种不同的设置,其中在量子方案中将热噪声引入信号模式。在这种新设置中,我们表明量子优势显著降低。然而,值得注意的是,在与量子 Fisher 信息相关的最佳测量方案下,我们表明双模压缩真空态确实在整个环境噪声和损耗范围内表现出量子优势。我们希望这项工作能为实验证明损耗参数传感中的量子优势提供指导,这种传感受有损和有噪声的环境影响。
1. 简介、特点和应用...................................................................................................... 1 简介...................................................................................................................... 1 特点...................................................................................................................... 1 应用...................................................................................................................... 1 2. 规格...................................................................................................................... 2 电气规格...................................................................................................................... 2 机械规格...................................................................................................................... 2 散热...................................................................................................................... 2 工作环境和其他规格.................................................................................................... 3 3. 引脚分配和说明.................................................................................................... 3 连接器 P1 配置.................................................................................................... 3 选择有效脉冲边沿和控制信号模式..................................................................... 4 连接器 P2 配置.................................................................................................... 4 4. 控制信号
假设检验 (HT) [1] 和量子假设检验 (QHT) [2] 在信息 [3] 和量子信息论 [4] 中发挥着至关重要的作用。HT 与通信和估计理论都有着根本的联系,最终是雷达探测任务的基础 [5],而雷达探测已经通过量子照明 (QI) 协议 [6, 7] 扩展到量子领域,更准确地说,通过微波量子照明模型 [8](有关这些主题的最新综述,请参阅参考文献 [9])。HT 和 QHT 最简单的场景是二元决策,因此它们可以简化为两个假设(零假设 H 0 和备选假设 H 1 )之间的统计区分。从最基本的层面上讲,量子雷达是一项二元 QHT 任务。两个备选假设被编码在两个量子通道中,信号模式通过这两个量子通道发送。根据目标是否存在,信号模式的初始状态会经历不同的变换,从而在输出端产生两个不同的量子态。最终的检测就简化为区分这两种可能的量子态。能否以较低的错误概率准确地做到这一点,与能否确定正确的结果直接相关。这一基本机制可以轻松地通过几何测距参数进行增强,这些参数可以量化与目标的往返时间,即目标的距离。虽然 QI 雷达可能实现最佳性能 [10],但它们需要生成大量纠缠态,这可能是一项艰巨的任务,特别是如果我们考虑微波区域的话。同时,量子雷达的定义本身可以推广到 QI 以外的任何利用量子部件或设备在相同能量、范围等条件下超越相应经典雷达性能的模型。在这些想法的推动下,我们逐步放宽 QI 的纠缠要求,并研究相应的检测性能,直到源变得刚好可分离,即
心脏病是全球最常见的死亡原因。因此,检测和分类心电图 (ECG) 信号对于延长预期寿命至关重要。在本研究中,我们旨在在现场可编程门阵列 (FPGA) 中实现人工智能信号识别系统,该系统可以在需要电池的边缘设备中识别生物信号模式,例如 ECG。尽管分类准确度有所提高,但深度学习模型需要大量的计算资源和功率,这使得深度神经网络的映射速度变慢,并且在可穿戴设备上的实现具有挑战性。为了克服这些限制,已经应用了脉冲神经网络 (SNN)。SNN 是受生物启发的事件驱动神经网络,使用离散脉冲计算和传输信息,这需要更少的操作和更简单的硬件资源。因此,与其他人工神经网络算法相比,它们更节能。
1. 引言 近年来,脑信号研究已广泛应用于经济学和管理学等各个领域,而以前它仅用于工程学和医学领域 [1,2]。了解脑电图 (EEG) 分析和分类的方法使研究人员能够开展更多实验,以最佳地利用这些信号 [3,4]。当一个人执行一项活动时,他或她会产生信号,而收集这些信号将有利于增强任何过程。通过收集,我们的意思是研究信号模式,该模式随后可用作评估其他人的参考,例如,机器人手部运动 [5,6] 和情绪识别 [7,8]。决策是每一项生活活动中的重要过程,无论是个人还是机构。在商业中,决策在每个步骤中都至关重要,包括计划、人员配备、组织、协调和后续行动 [9,10]。决策可以分为
尽管基于深度学习的算法在通过脑电图 (EEG) 信号自动识别情绪方面表现出色,但个体脑信号模式的差异会降低模型在不同受试者身上应用时的有效性。虽然迁移学习技术已经表现出良好的效果,但它们仍然面临与特征表示不足相关的挑战,并且可能会忽略源受试者本身可能具有不同特征的事实。在这项工作中,我们提出了一种多源域自适应方法,该方法使用基于变换器的特征生成器 (MSDA-TF),旨在利用来自多个来源的信息。所提出的特征生成器保留了卷积层以捕获浅层空间、时间和频谱 EEG 数据表示,而自注意机制则提取这些特征内的全局依赖关系。在适应过程中,我们根据相关值对源主体进行分组,并旨在将目标主体的时刻与每个源以及源内的时刻对齐。MSDA-TF 在 SEED 数据集上得到了验证,并显示出良好的结果。
摘要 — 在过去的几十年中,情绪研究一直试图识别一种“生物标志物”或一致的大脑活动模式,以表征单一类别的情绪(例如恐惧),该模式在该类别的所有实例中都保持一致,无论个体和环境如何。在这项研究中,我们研究了人们在观看选择用来唤起特定情绪类别实例的视频片段时情绪体验过程中的变化而不是一致性。具体而言,我们开发了一种顺序概率方法来模拟参与者在观看视频期间大脑活动的时间动态。我们将这些片段期间的大脑状态描述为血氧水平依赖性(BOLD)信号模式中状态转换之间的不同状态占用期。我们发现在观看同一视频的不同个体之间状态占用概率分布存在很大差异,这支持了以下假设:当涉及到情绪体验的大脑相关性时,变化确实可能是一种常态。
摘要这项研究旨在开发和验证机器学习模型,以预测不同加速度计量的品牌和位置范围内囊性纤维化(CF)的儿童和青少年的强度。患有CF(11.6±2.8岁; 15个女孩)和28名健康青年(12.2±2.7岁; 16岁的女孩)的三十五名儿童和青少年进行了六项活动,而佩戴了基因作用(手腕)和Actigraphs GT9X(手腕和腰围)。使用三个监督的学习分类器(K-Nearest邻居,随机森林和极端梯度增强的决策树)来识别每种PA类型和强度的输入信号模式,并使用10倍的交叉验证来评估分类器的性能。Actigraph GT9X在主要手腕上,腰部和遗传性手腕上的遗传性无法预测剧烈的强度PA活性。所有其他用于活动类型和强度的模型都超过97%的精度,敏感性和特异性大于95%,而不论加速度计品牌,位置或健康状况如何。