目前部署的无人机范围从翼展只有几厘米的微型无人机一直到翼展宽度为 80 米的无人战斗机和研究无人机。它们用于执行的军事任务多种多样。无人机主要在情报、侦察、监视、火控、作战任务、信息传输、电子战或目标捕获支援方面部署,非常有效。下页图 1 显示了德国陆军未来的 TAIFUN 作战无人机 (CUAV),由 STN ATLAS Elektronik 制造。
轴计数器现场单元是轨道侧电子组件,它为轴检测器供电,用于检测通过的车轮,确定移动方向并保持车轮数量。它应该定期将计数和健康信息传输到中央评估器,或者能够与轨道段另一端的其他计数设备/数字轴计数器现场单元(轨道侧)通信。这可能是一个单独的单元,保存在现场或与评估器集成。
最终任务:最终任务是专门设计的,旨在封装整个课程中获得的知识和技能。工作的通用是开发交互式应用程序(仪表板),该应用程序允许实时的信息传输和基本的在线分析处理(OLAP)实时执行。学生被要求对历史数据进行描述性和预测性分析,并参与撰写简短但全面的业务报告,总结和解释他们的发现,并将其介绍给感兴趣的各方(例如C级套件)。
Younse 的论文研究调查了使用基于模型的系统工程 (MBSE) 方法为 NASA 喷气推进实验室开发的名义火星样本返回 (MSR) 活动的捕获、收容和返回系统 (CCRS) 有效载荷构建火星轨道样本捕获和定向模块 (COM) 系统概念的好处。与传统的非 MBSE 方法相比,这项研究在改进架构知识捕获、架构活动期间的信息传输以及系统建模和仿真方面表现出了可衡量的优势。
摘要。人们认为,大脑网络保持高传输效率的方式是理解大脑活动的基础。由更多细胞组成的大脑使信息传输更加可靠,对噪声的鲁棒性更强。另一方面,在更大的网络中处理信息需要额外的能量。最近的研究表明,复杂性、连通性和功能多样性,而不仅仅是神经元的大小和数量,可能有利于记忆、学习和更高级认知的进化。在本文中,我们使用香农信息理论定量解决传输效率问题。我们将神经网络描述为通信通道,然后将信息测量为刺激和网络响应之间的互信息。我们采用基于 Levy 和 Baxter 提出的方法的概率神经元模型,该模型包含基本的定性信息传输机制。在本文中,我们概述并讨论了我们之前关于大脑启发网络的定量结果,并在更广泛的文献背景下探讨了它们的定性后果。结果表明,在非常嘈杂的环境中,例如,只有三分之一的输入脉冲被允许通过嘈杂的突触并深入网络,互信息通常会最大化。此外,我们还表明,抑制连接以及适当位移的长距离连接通常可以显著提高传输效率。从高等数学的角度深入理解大脑过程对于解释大脑效率的本质起着重要作用。我们的研究结果证实,在进化过程中出现的基本大脑成分是为了优化传输性能而产生的。
洪水指示系统(FIS)是一个水传感器,可以检测水的升高,以提醒社区洪水灾难的可能性。该项目的主要重点是开发一个可以读取水位的简单系统,但随着警报功能,将水的信息发送到危害水平的信息,将其提高到周围的社区。现有系统可以分析水的增加,以确定发生洪水的可能性,但是当面对突然的洪水时,该系统并不是那么有效,因为水位迅速上升并影响社区有关灾难的信息传递,这可能导致严重的损害和损失。为了确保信息传输,该项目将配备消息警报系统,该系统可以作为早期警报向社区发送警报消息,该警报可以帮助他们在灾难发生之前撤离。此信息传输方法是有效的,因为它可以确保社区将直接从他们的手机中获取消息。使用Microbit Makecode的程序已用于使该系统能够检测水的增加并创建所需的信息,以提醒周围社区的水位危险水平。在这个项目中,洪水指标系统计划的功能可以帮助避免重大损失和生命损失的洪水时撤离社区。这项研究的结果,FIS的编程是为了帮助检测使用水传感器的水和洪水的增加,并在提前预防措施中发送警报信息以帮助撤离。因此,使用FI来帮助面临洪水灾难的社区将更加有效。
在1940年代和1950年代,将DNA作为遗传的分子发现,并包含在细胞核中存在的染色体中组织的生物体的所有遗传创新,这立即引起了科学家的注意。当时,它旨在了解该分子的化学和三维结构。一些研究小组已经开始争议,以试图揭示DNA的结构以及其原子在三维空间中的组织方式。通过终结,Watson和Crick在1953年对DNA结构的描述带来了非常重要的信息,以理解该大分子,以及如何通过DNA复制过程将其中包含的信息传输到下一代。
“如果我们想在量子计算方面取得进展并创造更具可持续性的电子产品,我们需要更长的激子寿命和不依赖电子电荷的新信息传输方式,”领导这项研究的亚历山德拉·兰扎拉 (Alessandra Lanzara) 表示。兰扎拉是能源部劳伦斯伯克利国家实验室 (Berkeley Lab) 的高级教职科学家和加州大学伯克利分校物理学教授。“在这里,我们利用拓扑材料的特性来制造一种寿命长且对无序性非常强大的激子。”
经常说,黑洞没有什么可以出现的(参见sec。33.1参考。[1])。但是,正如我们先前所说的那样[2],此陈述可能并不完全正确。信息不是通过粒子来驱动的,而是通过量子散射过程中的动量转移。实际上,信息传输过程不是基于更快的信号交换,而是基于虚拟光子交换。这导致了两个最初未进入的带电粒子之间的动态纠缠,这些粒子位于黑洞地平线的不同侧面。依靠这种动量转移的Gedanken-实验[2],没有量子散射),原则上可以从黑洞内部到黑孔地平线外部的元素消息(位值“ 1”或“ 0”)的传输。