对于任何状态 ρ 和 σ (其中后者不需要归一化)。相对熵是一个比冯·诺依曼熵更一般的熵量。它包含后者和其他信息测度,如互信息,作为特例。它可以看作是量子态之间的相异性度量,并用于定义各种重要量,如纠缠的相对熵 [6]。相对熵表征非对称假设检验的误差指数 [7] 或量化资源理论中的资源量 [8,9]。到目前为止,还没有证明量子相对熵的链式法则。这与经典情况形成了鲜明的对比,在经典情况下,相对熵(也称为 Kullback-Leibler 散度)存在链式法则 [10,定理 2.5.3]。对于一对离散随机变量 ( X, Y ),其字母为 X × Y ,我们有
1 引言 5 1.1 量子计算基本思想的演变 ...................5 1.2 量子计算与 TGD .....。。。。。。。。。。。。。。。。。。。。。。。6 1.2.1 量子跃迁作为意识和认知的基本粒子 ....7 1.2.2 负熵最大化原理保证最大纠缠 ...7 1.2.3 数论信息测度与扩展理性纠缠作为束缚态纠缠 ........................7 1.2.4 时间镜像机制与负能量 .................7 1.3 TGD 和与 TQC 相关的新物理学 ................8 1.3.1 拓扑量化磁通管结构作为辫子 .......8 1.3.2 TGD 中的任意子 .........。。。。。。。。。。。。。。。。。。。。。。。8 1.3.3 Witten-Chern-Simons作用与类光3-曲面。。。。。。。。。。。。。9 1.4 TGD 和 TQC。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1.4.1 仅需要 2 个门。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 1.4.2 TGD使零能耗TQC成为可能。。。。。。。。。。。。。。。。。。。。。10
信息图被用来讨论两种不同信息测度之间的关系,如冯·诺依曼熵与误差概率[1],或冯·诺依曼熵与线性熵[2]。对于线性(L)熵和冯·诺依曼(S)熵,通常对任何有效的概率分布ρ绘制(L(ρ),S(ρ))图。这里,ρ也可以表示量子系统的密度矩阵(或者更确切地说是具有其特征值的向量),这也是本文的主要兴趣所在。我们特别关注由此产生的信息图区域的边界,其中相关的概率分布(或密度矩阵)将被表示为“极值”。在参考文献[3]中,对两个量子比特的熵进行了比较(有关离子-激光相互作用的情况,另见[4])。在 [5] 中,对任意熵对的信息图进行了详细研究。文中证明了,对于某些条件(线性、冯·诺依曼和雷尼熵满足),极值密度矩阵始终相同。文中给出了反例,但一般来说,偏差会非常小,并且可以安全地假设这些极值密度矩阵具有普适性。在本文中,我们将使用信息图来获取对称多量子系统中粒子纠缠的全局定性信息,该系统由广义“薛定谔猫”(多组分 DCAT)态(在 [6] 中首次引入,作为振荡器的双组分偶态和奇态)描述。这些 DCAT 态原来是 U(D)自旋相干(准经典)态的 ZD−12 宇称改编,它们具有弱重叠(宏观可区分)相干波包的量子叠加结构,具有有趣的量子特性。为此,我们使用一和二量子Dit 约化密度矩阵 (RDM),它是通过从由 cat 态描述的 N 个相同量子Dit 的复合系统中提取一两个粒子/原子,并追踪剩余系统获得的。众所周知(见 [3] 及其参考文献),这些 RDM 的熵提供了有关系统纠缠的信息。我们将绘制与这些 RDM 相关的信息图,并提取有关一和二量子Dit 纠缠的定性信息,以及相应 RDM 的秩,这也提供了有关原始系统纠缠的信息 [7]。我们将应用这些结果来表征 3 级全同原子 Lipkin–Meshkov–Glick 模型中发生的量子相变 (QPT),以补充 [ 8 ] 的结果。具体来说,我们已经看到,一和二量子 DIT RDM 的秩可以被视为检测 QPT 存在的离散序参量前体。本文结构如下。第 2 节回顾了信息图的概念,描述其主要属性,特别是关于秩的属性。第 3 节回顾了 U(D) 自旋相干态的概念及其 ZD−12 宇称适配版本 DCAT。在第 4 节中,我们计算了 2CAT 和 3CAT 的一和二量子 Dit RDM、它们的线性熵和冯诺依曼熵,绘制了它们并构建了相关的信息图。在第 5 节中,我们使用信息图提供有关 Lipkin–Meshkov–Glick (LMG) 模型中 QPT 的定性信息。第 6 节致力于结论。