摘要 — 脑启发计算利用神经科学原理来支撑大脑在解决认知任务方面无与伦比的效率 — 正在成为一种有前途的途径,以解决当今深度学习面临的若干算法和计算挑战。尽管如此,当前的神经形态计算研究是由我们在执行确定性操作的计算平台上运行深度学习算法的完善概念驱动的。在本文中,我们认为在概率神经形态系统中采用不同的方式执行时间信息编码可能有助于解决该领域的一些当前挑战。本文将超顺磁隧道结视为一种潜在的途径,以实现新一代脑启发计算,它结合了计算神经科学的两个互补见解的各个方面和相关优势 — — 信息如何编码以及计算如何在大脑中发生。硬件算法协同设计分析证明 97。由于时间信息编码,状态压缩的 3 层自旋电子学使随机脉冲网络在 MNIST 数据集上具有高脉冲稀疏度,准确率为 41%。
可以得到为 |𝜓 # ⟩ 89:; = b|𝐻⟩ 8 " |𝐿⟩ 9 " F|𝑉⟩ : " |𝑅⟩ ; " + |𝑅⟩ : # |𝑉⟩ ; # G −|𝑉⟩ 8 " |𝐿⟩ 9 " F|𝐻⟩ : " |𝑅⟩ ; " + |𝑅⟩ : # |𝐻⟩ ; # Gc/2 。否则,如果
应用:• 光镊 — 粒子或粒子聚集体的定向操控• 光通信 — 高带宽信息编码• 量子密码学/计算 — 高维量子信息编码• 灵敏光学检测• 原子、核和粒子物理学的基础科学研究(改进的选择规则、二向色性)
•QKD是量子信息科学的主要应用•实际实现易受噪声•噪声阻碍:1。可实现的关键费率2。传输距离•提高噪声阻力是剩余的关键挑战之一•我们通过将信息编码为𝑑-
信道的 Holevo 信息可以用以下方案定义:Alice 将经典随机变量 X 的信息编码为量子态,该变量在 X 中的值服从概率分布 pX,使用一组状态 { ρ x } x ∈X 。为了跟踪经典随机变量但用量子力学公式表示一切,我们认为 Alice 保存着她编码的信息的“笔记本”,我们可以将其建模为使用正交基 {| x ⟩} x ∈X 将该信息存储在另一个寄存器 N 中。从这个“笔记本”寄存器 N 中,可以完全恢复 X 的经典信息。总之,Alice 准备了二分态 ρ NA = X
以现有技术构建的量子计算机难以小型化,也不太可能成为笔记本电脑或手机等个人电子产品 [1–4]。因此,基于云的服务被认为是向公众提供量子计算机访问权限的最适用方法。人们自然会问,当无法完全控制量子硬件时,是否可以保持量子算法的隐私。盲量子计算 (BQC) 旨在解决这个问题。量子算法可以在第三方量子代理上使用 BQC 协议执行,同时保持算法、数据和结果的机密性 [5, 6]。这里我们讨论了两种实现通用量子计算的方法。一种是基于门的量子计算 (GBQC) [7]。该方法从纯量子态开始,通常将所有量子位重置为零。然后,它使用一系列量子门转换量子态。最终的输出状态携带处理后的信息。另一种方法称为基于测量的量子计算 (MBQC) 或单向量子计算 [8–11]。该方法准备一个高度纠缠的多个量子比特状态,通常称为簇状态 [12],然后执行一系列测量和校正来实现计算。最终它可以给出与 GBQC 相同的结果。[6] 基于 MBQC 框架提出了通用盲量子计算 (UBQC) 协议。UBQC 协议利用通用簇状态,可以由具有单个代理的半经典客户端或具有多个代理的完全经典客户端实现。还有其他提案可以使用单个代理和完全经典客户端实现 BQC,但是,这些提案需要一些计算假设 [13–15]。在本文中,我们利用量子图形推理方法 ZX-Calculus 来推导可以用多个代理和完全经典客户端实现的 BQC 协议。UBQC 协议利用通用簇状态,强制将描述算法的所有信息编码在测量轴中。它牺牲了将信息编码到量子比特之间的纠缠结构中的能力。相反,我们的方法确实将信息编码在纠缠结构中,并且不需要通用簇状态。这使得我们的协议更加节省资源。本文安排如下:第二节 B 描述了 ZX 演算,这是一种图形量子推理技术,我们用它来推导结果。第三节解释了我们的 BQC 协议。第四节证明了我们协议的正确性和安全性。第六节讨论了与现有验证协议的兼容性,并量化了我们的协议和 UBQC 协议的资源成本。第七节总结了本文。
亲爱的编辑,人类的大多数遗传疾病是由单核苷酸突变引起的。尽管使用基于 CRISPR 的胞嘧啶碱基编辑器 (CBE) 1 或腺嘌呤碱基编辑器 (ABE) 2 进行基因组编辑对于某些遗传疾病中 C 到 T 和 A 到 G 碱基替换的基因校正大有希望 3,4,但这两种编辑器对于纠正其他变异(如碱基颠换、小插入和缺失 (indel))均无效。prime editing 系统是一种“搜索和替换”基因组编辑技术,最近被添加到基因组编辑工具包 5 中。prime editors (PEs) 结合了外源性 CRISPR/Cas9 系统和内源性 DNA 修复系统,以实现更大的编辑多功能性,诱导 CBE 和 ABE(C → T、G → A、A → G 和 T → C)之外的所有类型的碱基到碱基转换、小插入/缺失及其组合。基因组编辑系统从PE1进化到PE3(PE3b),效率逐步提高5。PE1的执行器由工程化的Cas9切口酶与逆转录酶(M-MLV RTase)5融合构建,可靶向基因组位点,切口DNA并引发逆转录(RT)。执行器结合工程化的基因组编辑向导RNA(pegRNA)寻找并切口目标DNA,从而通过RT将新的遗传信息编码到基因组中。然后,对M-MLV RTase引入突变以提高PE1的编辑效率,此PE2被称为PE2。随后,在PE3b中,执行器与工程化的Cas9切口酶5融合,可靶向基因组位点,切口DNA并引发逆转录(RT)。执行器与工程化的基因组编辑向导RNA(pegRNA)结合,寻找并切口目标DNA,从而通过RT将新的遗传信息编码到基因组中。然后,对M-MLV RTase引入突变以提高PE1的编辑效率,此PE2被称为PE2。
磁条于 20 世纪 60 年代初推出,银行可以利用该技术将卡信息编码到卡背面的磁带上。这项技术为电子支付终端和芯片卡铺平了道路,提供了更高的安全性和实时授权,同时使各种规模的企业更容易接受卡。然而,在随后的几十年里,磁条漏洞变得显而易见,因为该技术容易受到欺诈和盗刷攻击,犯罪分子会在 ATM、销售点终端或加油泵上非法安装设备(盗刷器)来获取数据或记录持卡人的 PIN。犯罪分子利用这些数据伪造借记卡或信用卡,然后从受害者的账户中窃取资金。
微电子技术和通信技术的最新进展使得以前深奥的技术兼容性标准这一主题成为我们日常生活中熟悉的事物,并成为行业媒体中讨论的常年话题(例如,参见 Arnold(1985)、Bartik(1985)、Cropper(1980)、Kass(1981)、SJMN(1986)、Teresko(1986)、Witten(1983))。今天,许多人(包括学院派经济学家)都乐于承认,信息编码、存储、处理和传输的技术标准的存在和性质具有相当重要的意义。兼容性和自愿标准制定问题已成为计算机操作系统和软件(例如 DOS 和 UNIX)、增值数据网络(例如 TELENET 和 TYMNET)、局域网、高清电视和光盘的开发和营销中的核心战略意义。2 • 最近爆炸性的
微电子技术和通信技术近年来不断发展,使得以前深奥的技术兼容性标准成为我们日常生活中熟悉的事物,并成为行业媒体经常讨论的话题(例如,参见 Arnold (1985)、Bartik (1985)、Cropper (1980)、Kass (1981)、SJMN (1986)、Teresko (1986)、Witten (1983))。今天,包括学术经济学家在内的许多人都乐于承认,信息编码、存储、处理和传输的技术标准的存在和性质具有相当重要的意义。有关兼容性和自愿标准制定的问题已成为计算机操作系统和软件(例如DOS 和 UNIX)、增值数据网络(例如 TELENET 和 TYMNET)、局域网、高清电视和光盘的开发和营销中的核心战略意义 2 • 最近的爆炸式增长