BSC生物化学学期I BC1141的课程成果:核心课程 - I课程标题 - 观点,方法论和生物分子 - 我的课程结果:学生将能够达到1。引起科学的概念2。将生物化学的演变和范围描述为科学学科。3。列出了研究生化过程的不同实验方法。4。准备不同浓度和pH的溶液。5。对碳水化合物和脂质进行分类和表征。学期公元前1221年:基金会课程课程标题:生物分子-II和生物信息学课程结果:学生将能够1。详细说明蛋白质的组成及其功能。2。详细说明了遗传信息载体分子在生活中的重要性。3。识别生物信息学的范围和应用。4。进行与生化问题有关的统计研究。5。确定信息技术在生物学中的应用。学期III BC1341:核心课程课程标题:蜂窝生物化学课程结果:学生将能够达到1。列出细胞细胞器并描述其结构和功能。2。详细介绍了跨细胞膜的不同类型的运输系统。3。解释细胞分区4。概述了癌细胞的特征和涉及癌症生物学的机制。5。细胞及其环境之间相互作用机理的细节。6。分类酶;描述酶抑制和调节的类型。学期IV BC 1441:核心课程 - iii课程标题:生物化学课程的技术结果:学生将能够达到1。解释不同显微镜,光度法的原理,工作和应用
光量子存储器及其在量子通信系统中的应用 马利军、Oliver Slattery 和唐晓 美国国家标准与技术研究所,马里兰州盖瑟斯堡 20899,美国 lijun.ma@nist.gov oliver.slattery@nist.gov xiao.tang@nist.gov 光量子存储器是一种可以存储光子的量子态并以高保真度按需检索的装置。它正在成为一种必不可少的设备,以提高通信、计算、计量等领域使用的许多量子系统的安全性、速度、可扩展性和性能。在本文中,我们将特别考虑光量子存储器对量子通信系统的影响。在概述光量子存储器的理论和实验研究进展之后,我们将概述其在量子通信中的作用,包括作为光子源、光子干涉、量子密钥分发(QKD)、量子隐形传态、量子中继器和量子网络。 关键词:量子通信;量子密钥分发;量子存储器;量子网络;量子中继器。接受日期:2019年12月9日 发表日期:2020年1月16日 https://doi.org/10.6028/jres.125.002 1. 引言 量子通信是一种利用信息载体(如单光子)的量子特性,实现双方量子信息交换的技术。该技术有许多独特的应用,是经典通信系统中不可能实现的。目前,量子通信有两种主要应用:量子密钥分发(QKD)和量子纠缠分发。
被困的离子提供了具有非常长的连贯时间的量子,可以用高填充性初始化,操纵,纠缠和读出[25-30]。更重要的是,被困的离子很容易与光场相互作用,在其电子状态(固定量子存储器 - 固定量子内存)和光子 - “浮动”量子信息载体之间提供了自然接口[31]。包含一个sin- gle物种的一个量子的被困的离子网状节点已通过光子链接连接,用于执行铃铛测试[7],状态传送[18] [18],随机数生成[19],量子密钥分布[21]和频率比较[22]。捕获的离子系统也证明了最新的单一和双Quibent Gate有限量,但是将它们集成到量子网络节点中仍然是一个挑战,因为适合量定通信的离子物种不一定还可以提供具有与网络活动的良好隔离的良好的存储量值。原子种(例如133 ba +或171 yb +)已被提议绕过这一问题[26,32],但是,所需的实验技术的发展仍在进行中。neverthe,每个角色都有可能被不同的物种填补[33]。此外,使用多种原子物种具有最小化串扰的优势,可以在中路测量和冷却[34]中最小化串扰[34]。
量子力学推动了技术上有用的组件(例如晶体管、激光器、磁隧道结等)的发展,这些组件改变了我们的经济和社会。下一代量子技术 (QT) 将基于叠加和纠缠的物理学,需要开发能够支持这些效应的新材料。在本期《观点》中,我们重点关注自旋和拓扑的材料实现,作为未来 QT 中可利用的量子对象,为计算、传感、通信和信息存储的新策略奠定基础。在固态材料中,自旋自由度可用于单自旋极限,其中孤立自旋的光学和电子控制可以实现高保真度的相干控制和自旋操纵。最近,基于微妙但强大的相对论自旋轨道耦合的概念已经实现了几个令人兴奋的突破,包括实空间和动量空间中的拓扑自旋纹理。磁性 skyrmion 是一个标志性的例子;它们的拓扑保护在纳米尺度上实现了巨大的稳定性,从而引发了将它们用作信息载体的令人兴奋的提议。稳健的自旋纹理也出现在拓扑绝缘体的动量空间中,可以产生高效的自旋电荷转换。将自旋轨道耦合的物理特性和新型自旋纹理与超导性相结合,可以进一步发挥协同作用,利用材料的量子力学相并生成新的序参量。在窄带隙和宽带隙半导体中实现的电子自旋量子比特现在已经为纳米级光通信网络和传感提供了最有前途的平台之一。
抽象目标。这项研究的主要目的是研究皮质肌肉,皮质内和肌间耦合。在此,我们建立了一个Cortico-Muscular功能网络(CMFN),以评估与制作拳头,张开手和手腕屈曲相关的网络差异。方法。我们使用转移熵(TE)来计算脑电图和肌电图数据之间的因果关系,并建立了TE连接矩阵。然后,我们应用了图理论来分析CMFN的聚类系数,全局效率和小世界属性。我们还使用hulief-f来提取beta2频段的TE连接矩阵的特征,以进行不同的手动运动,并在使用此功能进行动作识别时观察到高精度。主要结果。我们发现,Beta频段中三个动作的CMFN具有小世界属性,其中Beta2频段的小世界更强大。此外,我们发现提取的特征主要集中在左额叶区域,左运动区域,枕叶和相关肌肉中,这表明CMFN可用于评估与不同手动运动相关的皮层和肌肉之间的耦合差异。总体而言,我们的结果表明,Beta2(21-35 Hz)波是皮质和肌肉之间的主要信息载体,并且可以在Beta2频段中使用CMFN来评估皮质肌肉耦合。意义。我们的研究初步探讨了与手动运动相关的CMFN,提供了有关皮质和肌肉之间信息传播的其他见解,从而为中风患者的病理学皮质区域奠定了基础。
1 医学生物学作为一门科学,是生物学和遗传学史上的标志 2 细胞和人体的化学组成。生物分子中的化学键 3 生物聚合物、一般结构、脂质、多糖 4 蛋白质结构 5 蛋白质功能 6 原核细胞和真核细胞的结构 7 生物膜(结构、功能) 8 膜蛋白和膜转运 9 细胞器(概述、结构、功能) 10 细胞骨架系统 - 概述、中间丝 11 细胞骨架系统 - 微管、微丝 12 导致发现 DNA 作为遗传信息载体的实验 13 核酸结构 14 原核生物和真核生物基因组(特征和差异) 15 人类基因组的结构(组蛋白、核小体、染色质) 16 线粒体基因组 17 DNA 复制 18 原核生物和真核生物中 DNA 复制的比较 19 DNA 损伤的类型及其原因 20 DNA 修复机制(NER、BER、错配修复 21 DNA 双链断裂修复 22 染色体不稳定性和非整倍性 23 分子生物学的中心法则,原核和真核基因 24 RNA 分子的类型和转录的一般特征 25 原核生物的转录 26 真核生物的转录 27 真核生物的转录后修饰 28 RNA 编辑和逆转录 29 遗传密码 30 tRNA 和氨酰基-tRNA 合成酶,核糖体结构 31 翻译 32 翻译后修饰 33 蛋白质折叠和蛋白质降解,蛋白质分选 34 原核生物基因表达调控-操纵子模型,示例 35 真核生物基因表达调控(概述) 36 转录水平的调控,转录因子 37 转录后水平的表达调控(从细胞核输出,mRNA退化,非
量子信息科学正处于变革的十字路口,即将彻底改变计算、密码学、通信、网络、计量、传感和成像等多个领域。在各种量子系统中,光子量子比特和中性原子是这场量子革命的关键催化剂。本演讲探讨了这些平台的协同融合,重点是通过相干原子集合中的自发四波混频 (SFWM) 开创窄带纠缠双光子源 [1,2]。值得注意的是,我们最近取得了一项独特的成就,首次通过热原子蒸汽中的自发六波混频 (SSWM) 创建了可靠的真正 W 级三光子源 [3],其产生速率达到了前所未有的水平。重要的是,这一突破无意中揭示了与几个世纪以来数学和天体力学中著名的三体问题的深刻联系。我们的旅程从基础量子概念开始,调查替代量子比特平台,并深入研究传统的双光子生成方法,如自发参数下转换 (SPDC) 和固体材料中的 SFWM。我们揭示了我们在相干原子内窄带双光子和三光子生成方面的最新突破,有望实现长距离量子信息处理和网络。单光子具有不可动摇的量子特性,可作为多功能信息载体,而中性原子则为培育长寿命量子比特和量子存储器提供了理想的环境。我们揭开了中性原子纠缠生成背后的复杂机制的神秘面纱,揭示了 SFWM 和 SSWM 原理。演讲最后展示了我们的最新进展,强调了我们在窄带纠缠光子中产生无与伦比的相干性和可调谐性的能力。这些属性推动了可扩展量子网络的发展,连接了量子处理器并实现了安全的全球信息交换。当我们踏上这段启迪之旅时,我们阐明了单光子和中性原子在推进量子信息科学和技术中的关键作用,激发了迈向量子未来的新研究途径。
过去十年,量子计算和信息处理因比经典算法具有更快的加速性能而引起了人们的广泛关注。从数学上讲,一个整体的量子操作可以看作是在构建量子网络中对输入量子比特进行的一系列幺正变换。实现量子计算的物理系统有很多,如离子阱、约瑟夫森结、氮空位中心等[1]。在这些物理系统中,线性光学方案最具吸引力,因为量子信息载体是光子,而光子可能不存在退相干[2,3]。当对输入光子进行量子计算时,基本量子比特通常由两个正交模式或两个偏振通道中的单光子来准备。为了在量子信息处理中产生所需的演化,每个相应的量子比特操作由一些简单的光学元件或它们的组合来实现,如分束器、移相器和波片[4,5]。单量子比特操作属于 U(2) 变换类,此类变换已在理论上进行了讨论,并通过这些元件的组合在实验中实现了 [2–6]。然而,使用传统线性光学元件的物理实现似乎体积庞大,难以集成到物理系统小型化,因此非常希望简化当前的光学实现。另一方面,超表面(单层或多层超材料结构)可以平坦、紧凑地实现经典光学区域中不同光学元件的小型化 [7,8]。由于在制作任何量身定制的共振超材料结构时都具有丰富的自由度,它们已经应用于需要复杂自由度的不同场景,包括全息图 [9,10]、光学平面透镜 [11,12]、斯托克斯偏振仪 [13–15] 和模拟计算 [16–18]。具体来说,超材料已用于执行信息或图像处理。通过将超材料像素化为一组离散结构,这些“数字超材料”可进一步用于执行不同的数学运算,如傅里叶变换和微分[15-22]。扩展到量子光学领域,超表面可用于替代传统的线性光学元件
光子量子信息处理是量子技术的主要平台之一 1 – 5,它主要依靠光量子干涉来产生不可或缺的有效光子 - 光子相互作用。然而,由于光子的玻色子性质 7 和传统酉光学元件的受限相位响应 8、9,这种有效的相互作用从根本上局限于聚束 6。在这里,我们提出并通过实验证明了非酉超表面实现的光量子干涉的新自由度。由于独特的各向异性相位响应产生了两个极端的本征操作,我们展示了对两个单光子有效相互作用的动态和连续控制,使得它们表现出玻色子聚束、费米子反聚束或任意中间行为,超出了它们固有的玻色子性质。这种量子操作为基础的量子光物质相互作用和用于量子通信、量子模拟和量子计算的创新光子量子装置打开了大门。超材料是一种具有亚波长元素的结构化材料,可以实现自然界中无法找到的波响应。通过定制超材料,人们已经展示了诸如负折射率、亚衍射成像和隐形斗篷等前所未有的特性 10 – 13 。超表面(二维超材料)使我们能够利用平面光学任意定制经典光的波前和传播 14 – 18 。同时,光子是极好的量子信息载体,因为它们具有长相干时间、室温稳定性、易于操纵和光速信号传输。使用单光子源、分束器、移相器和单光子探测器的量子光子学一直是量子计算、量子模拟和量子通信的主要平台之一 1 – 5 。因此,将超材料无与伦比的光控制与量子光学相结合,可以带来量子信息应用的全新可能性 19 – 22 。光子量子信息处理应用(如线性光学量子计算 1 、玻色子采样 23、24、量子行走 25 和量子通信 26)的核心操作单元是量子双光子干涉 (QTPI)。分束器是此量子操作的关键元素。当两个无法区分的单光子同时到达 50:50 分束器的两个输入端口时,QTPI 表现为洪-欧-曼德尔 (HOM) 效应 6 。在原始的 HOM 实验中,两个光子总是聚集在一起,并以相同的输出离开分束器