变分量子算法在 NISQ 时代取得了成功,因为它们采用了量子-经典混合方法,可以缓解量子计算机中的噪声问题。在我们的研究中,我们在变分量子线性求解器中引入了动态假设,用于线性代数方程组。在这个改进的算法中,硬件高效假设电路的层数不断演变,从少量开始逐渐增加,直到达到解的收敛。我们展示了该算法与标准静态假设相比的优势,即在有和没有量子噪声的情况下,以及在系统矩阵的量子比特数或条件数增加的情况下,使用更少的量子资源和平均较小的量子深度。迭代次数和层数可以通过切换参数改变。该算法在使用量子资源方面的性能由新定义的指标量化。
摘要:我们提出了一种量子-经典混合变分算法,即量子轨道最小化方法(qOMM),用于获得厄米算子的基态和低激发态。给定表示本征态的参数化拟设电路,qOMM 实现量子电路来表示轨道最小化方法中的目标函数,并采用经典优化器根据拟设电路中的参数最小化目标函数。目标函数具有隐式嵌入的正交性约束,这使得 qOMM 可以对每个输入参考态应用不同的拟设电路。我们进行了数值模拟,试图使用 UCCSD 拟设电路在 STO-3G 基中寻找 H 2 、LiH 和由四个氢原子排列成方格的玩具模型的激发态。将数值结果与现有的激发态方法进行比较,qOMM 不太容易陷入局部最小值,并且可以通过更浅的假设电路实现收敛。