3D 偏振光成像 (3D-PLI) 方法测量组织学脑切片的双折射以确定神经纤维 (髓鞘轴突) 的空间走向。虽然可以高精度地确定平面内纤维方向,但计算平面外纤维倾角更具挑战性,因为它们是从双折射信号的幅度中得出的,而双折射信号的幅度取决于神经纤维的数量。提高精度的一种可能性是考虑平均透射光强度 (透射加权)。当前程序需要费力地手动调整参数和解剖知识。在这里,我们引入了一种自动化、优化的纤维倾角计算,从而可以更快、更可重复地确定 3D-PLI 中的纤维方向。根据髓鞘的程度,该算法使用不同的模型 (透射加权、不加权或线性组合),从而可以考虑区域特定行为。由于该算法是并行的和 GPU 优化的,因此可以应用于大型数据集。此外,它仅使用标准 3D-PLI 测量的图像(无倾斜),因此可以应用于以前测量的现有数据集。此功能已在黑长尾猴和大鼠脑的未染色冠状和矢状组织切片上得到验证。
1 中国科学院物理研究所北京凝聚态物理国家实验室,北京 100190;baiqinghu@iphy.ac.cn (QB);yangguo@aphy.iphy.ac.cn (YG);azjin@iphy.ac.cn (AJ);quanbaogang@iphy.ac.cn (BQ);hfyang@iphy.ac.cn (HY);blliu@iphy.ac.cn (BL) 2 中国科学院大学物理学院,中国科学院真空物理重点实验室,北京 100190 3 松山湖材料实验室,东莞 523808;liangqijie@sslab.org.cn 4 深圳大学射频异质集成国家重点实验室,深圳 518060;2200434018@email.szu.edu.cn (TL) wgliao@szu.edu.cn (WL) 5 深圳大学电子信息工程学院,深圳 518060,中国 6 中国科学院大学,中国科学院拓扑量子计算卓越中心,中国科学院真空物理重点实验室,北京 100190,中国 * 通信地址:xinhuang@iphy.ac.cn (XH); czgu@iphy.ac.cn (CG) † 这些作者对这项工作做出了同等贡献。
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
对感兴趣的目标(无论是轴外点源伴星还是扩展源内的单个空间分辨率元件)进行 CGI 线性偏振分数测量,都会受到不同杂散效应的困扰,需要通过设计进行校准或最小化。仪器偏振效应由端到端光学系统穆勒矩阵 (MM) 描述,如图 1 所示。穆勒矩阵描述了整个光学系统如何将非偏振光转换为偏振光,并修改源线性偏振分数及其方向。假设目标圆偏振分数可忽略不计(Vsky=0,对于所考虑的目标而言,这是一个有效的假设),并且鉴于罗马日冕仪仅测量线性偏振分数,必须确定 9 个 MM 系数才能将观测到的斯托克斯矢量转换为源真实斯托克斯矢量及其线性偏振分数的估计值。
该项目研究了所谓的湖泊效应假说,即公用事业规模的太阳能设施通过模拟鸟类定位水体的视觉线索来吸引鸟类。该研究遵循了三个相互关联的主题,这些主题与鸟类被太阳能设施吸引的过程相匹配:1) 鸟类检测到有吸引力的线索(例如偏振光),导致 2) 相应地调整向太阳能设施的飞行行为,3) 导致鸟类到达太阳能设施并与之互动,可能导致鸟类死亡。实地实验的结果表明,鸟类可以看到可见光范围内的偏振光,并利用它来做出觅食决定和定位水体。太阳能电池板成像研究的结果表明,薄膜和多晶硅两种类型的电池板都会使反射的阳光偏振,与水体的反射一致。飞行中的动物显示出下降的强烈证据,但没有重新定位到太阳能设施,这与太阳能线索的吸引力一致。南加州光伏太阳能设施发现鸟类死亡的频率高于周边地区。光伏太阳能设施吸引水生栖息地鸟类可能是一个微妙的过程;然而,这种设施不太可能在任何时候都为所有水生栖息地鸟类提供湖泊的线索。这项研究的结果与湖泊效应假设基本一致,可能有助于确定减少对鸟类影响的方法(例如,破坏偏振光传输的面板技术)。证明这些解决方案可以有效降低鸟类死亡率可以降低太阳能建设和生产的监管成本,这对加州雄心勃勃的清洁能源任务和该州的纳税人来说都是有利的。