获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:自动识别头部运动过程中的人类大脑刺激可能会为人机交互 (HCI) 带来重大进步,对严重残疾人群和机器人技术都有重要应用。本文提出了一种基于神经网络的识别技术,通过脑电图信号识别参与者在受到视觉刺激时的头部偏航旋转。目标是识别脑电活动与由参与者左手边/右手边的灯打开/关闭触发的头部运动之间的输入输出函数。该识别过程基于“Levenberg-Marquardt”反向传播算法。在十名参与者身上获得的结果跨越两个多小时的实验,显示了所提出的方法在识别与头部转动相关的脑电刺激方面的能力。对每个参与者的每个实验相关的脑电图信号进行初步分析。预测的准确性由同一文件的训练和测试试验之间的显著相关性证明,在最佳情况下,相关性达到 r = 0.98,MSE = 0.02。在第二次分析中,对一名参与者的 EEG 信号进行训练的输入输出函数由其他参与者的 EEG 信号进行测试。在这种情况下,低相关系数值表明,当对不同的受试者进行训练和测试时,分类器的性能会下降。