图 21 翼尖有垂直尾翼时升阻比与偏航角及 AOA 相互作用。 57 图 22 垂直尾翼位于机翼侧面时偏航角和 AOA 对升阻比的相互作用......................................................................................................................... 58 图 23 垂直尾翼位于翼尖时 AOA 和偏航角对 CYM 影响的 3D 绘图......................................................................................................................... 58 图 24 垂直尾翼位于机翼侧面时 CYM 的 AOA 和偏航角 3D 绘图......................................................................................................................... 59 图 25 推进分析中电流和 AOA CD 影响的 3D 绘图..................................................................................................................... 5 ........................ 61 图 26 未使用推进系统时 A O A 对 CL 的影响 .............................................................. 61 图 27 带推进系统且电流 = 10 AMPS 时 A O A 对 CL 的影响 ................................................................................................................ 62 图 28 未使用推进系统时左侧控制面偏转对 C RM 的影响 ................................................................................................................................ 63 图 29 带推进系统且电流 = 10 AMPS 时左侧控制面偏转对 C RM 的影响 ................................................................................................................
(57) 摘要:公开了一种用于自主导航的飞行器偏航角估计的系统和方法。该系统包括以预定义方式位于竞技场中的第一组超宽带 (UWB) 传感器,以及安装到飞行器上的第二组超宽带 (UWB) 传感器、加速度计、陀螺仪和处理器。处理器被配置为基于从第一组 UWB 传感器、加速度计和陀螺仪接收的信号来识别第二组 UWB 传感器相对于惯性参考系的位置。处理器还被配置为基于第二组超宽带传感器对应于参考系的矢量角的位置来计算偏航角。该系统始终提供准确的偏航角估计,并且在 GNSS 拒绝环境中提供准确的定位。
相机放置在相机支架上,该支架牢固地固定在飞机的机身上。支架具有隔振器,可吸收飞行中飞机固有的振动。振动会使图像模糊,并降低图片的可解释性。此外,支架还具有万向节系统,使摄影师能够适应飞机的俯仰和偏航并补偿航向。由于风的原因,飞机通常必须将航向稍微转向侧风以保持恒定的飞行方向。航向和实际飞行方向之间的差异称为偏航角。消除偏航可获得与飞行方向正确定向的图像,这是摄影测量任务所必需的。
图 3.29:升降舵偏转信号 ...................................................................................................... 37 图 3.30:方向舵偏转信号 ...................................................................................................... 37 图 3.31:沿 X 方向的速度 B(“u”) ............................................................................................. 38 图 3.32:沿 Y 方向的速度 B(“v”) ............................................................................................. 38 图 3.33:沿 Z 方向的速度 B(“w”) ............................................................................................. 38 图 3.34:滚转速率(“p”) ............................................................................................................. 39 图 3.35:俯仰速率(“q”) ............................................................................................................. 39 图 3.36:偏航速率(“r”) ............................................................................................................. 39 图 3.37:滚转角度(“Phi”) ............................................................................................................. 40 图 3.38:俯仰角度(“Theta”) ........................................................................................... 40 图 3.39:偏航角(“Psi”)................................................................................................... 40 图 3.40:迎角
图 3 (A) 根据方程 (11),建模的时间延迟(以秒为单位)与流向距离 x 的关系,其中积分上限为 x,不同的颜色代表不同的偏航角。 (B) 建模的两个涡轮机之间的时间延迟(以秒为单位)与第一个涡轮机的偏航的关系。 对于该测试,涡轮机直径为 100 m,涡轮机轮毂高度也是 100 m,自由流速度为 U ∞ = 7:77 m/s,并通过设定摩擦速度 u ∗ = 0:45 m/s 来确定,然后使用方程 U ∞ =ðu∗lnðzh=z0ÞÞ=0:4 来找到轮毂高度的自由流速度。局部推力系数为 C0T = 4 = 3,尾流膨胀系数由公式确定:kw = u∗ = U∞ = 0:0579
摘要:姿态计量(滚转、俯仰和偏航)在许多不同领域发挥着重要作用。与俯仰角和偏航角相比,滚转角被认为是角位移中最难测量的量,因为滚转角的旋转轴与探测光束平行。在本文中,提出了一种灵敏度增强的滚转角传感器。其原理基于传感单元(四分之一波片)的偏振变化。通过 Mueller 矩阵形式分析了偏振模型。斯托克斯参数由斯托克斯偏振计检测。新颖的同轴设计通过固定的四分之一波片提高了灵敏度并降低了光学系统对准的复杂性。所提出的传感器提供了一种简单的装置来测量滚转角,具有 0.006 ∘ 的高灵敏度和 180 ∘ 的长无模糊测量范围。
碰撞率。虽然当前的方法倾向于评估计划轨迹的碰撞率[1-5,7],但在现有方法中的定义和实施中都存在问题。首先,在开环的最终自动驾驶中,其他代理不会引起自我汽车的反应。相反,他们严格遵守预定的轨迹。因此,这导致碰撞率的计算偏差。第二个问题源于以下事实:当前方法产生的计划预测仅由一系列轨迹点组成。因此,在最终碰撞计算中,不考虑自我汽车的偏航角。替代,假定它保持不变。此假设导致错误的结果,特别是在转弯场景中,如图1。当前实施中也存在问题。每个样本的碰撞率的当前定义是:
摘要:近年来,太阳能已被用作许多不同应用的能源。目前,在无人机 (UAV) 领域,有研究将这种可再生能源技术融入其中,以提高车辆的自主性。该技术还需要特殊的构造技术和电子板,旨在减轻重量并提高无人机上所有太阳能系统的效率。众所周知,如果添加太阳跟踪技术,全天产生的太阳能量可以增加。本文证明,固定翼无人机的滚转角可用于跟踪太阳,以增加机翼上太阳能电池板产生的能量。在这种情况下,必须通过偏航角控制来补偿飞机的姿态,才能执行摄影测量任务。这将使用基于超扭曲技术的控制策略来实现,该策略确保即使在存在有界扰动的情况下也能在有限的时间内收敛。控制律的设计以及数值模拟和实际飞行结果均用于验证太阳跟踪系统的使用。