摘要:太阳能驱动的二氧化碳还原是合成燃料和化学品的碳中性途径。我们在此报告使用光伏电池直接供电的气体扩散电极 (GDE) 进行太阳能驱动的 CO 2 还原的结果。GaInP/GaInAs/Ge 三结光伏电池用于为采用 Ag 纳米颗粒催化剂层的反向组装气体扩散电极供电。在 1 个太阳的模拟 AM 1.5G 照明下,该装置的太阳能到 CO 能量转换效率为 19.1%。使用反向组装 GDE 可防止催化剂床从湿润转变为充满,并使装置稳定运行 >150 小时而没有效率损失。在加利福尼亚州帕萨迪纳市的环境太阳光照下进行了户外测量,结果显示太阳能转化为二氧化碳的峰值效率为 18.7%,二氧化碳生成率为每天 47 毫克·厘米 −2,日平均太阳能转化为燃料的效率为 5.8%。
单opellopellotant推进器是空间行业开发的最推进系统类型之一。该系统使用一种类型的推进剂,该推进剂在多孔培养基催化床上反应,以热气的形式产生推力。过去十年,绿色推进剂过氧化氢(H 2 O 2),也称为高测试过氧化氢(HTP),由于其低成本且易于储存为液体,被用作非常有毒且不环保的液态溶液。在当前的研究中,研究过氧化氢单op液推进器将在未来的卫星中进行应用。使用计算流体动力学(CFD)软件ANSYS Fluent进行数值模拟,以模拟推进器中过氧化氢的流体流动,并采用了有限体积方法来解决管理方程。物种传输模型使用涡流化学相互作用的涡流耗散模型(EDM)应用于单相反应模拟。基于局部热非平衡(LTNE)模型的数学方法用于描述通过包装床中的固体和流体阶段的传热,由相同的球形银颗粒组成。进行了几次模拟,可以最佳设计注射器,催化剂床的长度以及直径和喷嘴几何形状,以达到10N单op纤维素推进剂,其过氧化氢的浓度为87.5%。
流化催化裂化 (FCC) 工艺在反应器中的催化剂的帮助下将柴油转化为可用产品(图 1)。催化剂附着在碳原子上,将长碳分子分解成有用产品。催化剂可以通过除去碳原子来重复使用。将催化剂与碳氢化合物产品分离。分离出的催化剂被移至称为再生器的容器中,在那里大量氧气被引入催化剂床层。在再生器中,氧气与碳发生反应,碳从催化剂上烧掉;产生热量,催化剂从烟气中分离出来。再生催化剂返回反应器。烟气通常为 25 至 50 psia (1.7 至 3.4 bara) 和 1250 至 1400°F (675 至 760°C),流速高达 1,700,000 lb/hr (775,000 kg/hr),通过第三级分离器去除额外的催化剂。然后烟气通过膨胀机。图 2 中可以看到最先进的单级膨胀机的横截面。图 3 显示了典型的两级膨胀机的示例。在膨胀机中,压力和温度降低,能量被提取并转化为机械功。即使烟气经过多个分离阶段处理,仍有相当数量的催化剂残留在烟气中并通过膨胀机。由于能源危机和电力成本,动力回收膨胀机装置的使用在 20 世纪 70 年代末和 80 年代初达到顶峰。由于在用的膨胀机的可靠性和可用性有限,从 20 世纪 80 年代末到今天,新膨胀机装置的数量一直在减少。技术进步(Carbonetto 和 Hoch,2002 年)提高了膨胀机的可靠性和可用性。如今能源成本的增加和对“绿色”能源的认识再次增加了人们对膨胀机的兴趣。
塑料生产和浪费塑料堆积的增长对社会,环境和经济构成了严重的挑战。当前的机械回收过程受到塑料废物的分类/预处理和塑料降解的限制,该过程要求更有效的回收策略。催化微波辅助的热解可以作为废物塑料化学回收并产生燃料和石化原料(如石脑油)的可行方法。本讲座介绍了我们最近的一系列关于热解反应堆设计和催化剂开发方面的工作,目的是将这项技术推向工业应用。每天开发了一个处理能力为200 kg塑料的实验室尺度连续微波辅助热解系统,该系统具有连续的下水流操作和混合球床反应器。将碳化硅作为微波吸收剂掺入微波加热过程中,可以快速,均匀和节能加热。使用常规ZSM-5催化剂对系统的基线测试获得了基于聚烯烃的塑料的C 5 -C 22液碳氢化合物的57 wt。%。通过使用行业供应链分析工具,使用材料流,与从维珍材料中生产类似产品相比,该过程的节能估计为32%。 为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。 ZSM-5涂料在SIC泡沫支撑上。与从维珍材料中生产类似产品相比,该过程的节能估计为32%。为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。ZSM-5涂料在SIC泡沫支撑上。值得注意的是,Al 2 O 3的继电器催化,然后是ZSM -5的ZSM -5,最多100%转化为单芳烃,而C 5 -C 12烷烃/烯烃以催化剂与塑性比为4:1; Y5.1,F20沸石和Al 2 O 3促进了主要在C5-C23范围内的烷烃和烷烃的生产; MCM -41导致形成C 13 -C 23烷烃和烷烃,选择性为86.6%; ZSM-5有利于选择性为70%的芳香剂的产生。除了开发和选择适当的催化剂材料外,还需要仔细设计催化反应器,以便在操作过程中确保足够的热量和催化剂床内的大量和传质,并且可以方便地实践催化剂再生程序。传统的设计(例如随机填充床)在此过程中可能会出现问题,因为催化剂停用和可乐/蜡堆积很可能。可能的解决方案是一个结构化催化反应器,该反应器由带有涂层催化剂的结构化填料组成,例如该结构化催化剂已在实验室规模的设置中进行了测试,用于升级热解蒸气,结果表明,在催化活性和稳定性方面,它的表现优于许多其他催化反应器设计。此外,可以将复合催化剂重新生成和重复使用,同时很好地保留其材料特性和多个反应再生周期后的催化活性。