光学畸变严重损害了各个领域的微观图像质量,包括细胞生物学和组织病理学诊断。传统自适应光学技术,例如波前塑形和指导星的利用,面临挑战,尤其是在成像生物组织中。在这里,我们引入了一种针对光学厚的样品量身定制的计算自适应光学方法。利用光学记忆效应的倾斜倾斜相关性,我们的方法检测到入射波中小倾斜引起的畸变中的相位差异。实验验证证明了我们技术在实质性的临界条件下使用传输模式样摄影设置在实质性临界条件下增强厚的人体组织成像的能力。值得注意的是,我们的方法对样本运动有牢固的作用,这对于提高关键生物医学应用的成像准确性至关重要。
使用这些先进的显微镜工具研究材料,为在原子层面探索其结构和化学性质提供了机会。电子光学和超灵敏探测器的最佳组合使得即使是最轻、最灵敏的材料也能在亚埃级进行表征。电子束中的像差校正使得能够通过同步 X 射线能量色散光谱和电子能量损失光谱 (EELS) 等技术精确获取原子级化学特性和键合状态信息。因此,最先进的电子显微镜技术对于材料研究至关重要。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
动态光学镜头镜片是透射自适应光学器件,旨在轻松整合到任何光学系统中以校正光学畸变。这些镜头的设计使用10、16或25mm透明的光圈,以覆盖常见的学生尺寸和M32 x 0.75安装线,可以通过使用线程适配器来适应常见的客观螺纹类型。它们可以使用波前传感器或自动软件校正系统进行封闭环控制,以进行像差校正。动态光学变形镜头也可以与低功率激光器一起用于梁的塑形,例如将高斯光束塑造为椭圆形或方形束轮廓或立方相。这些镜片是光学相干断层扫描(OCT),共聚焦显微镜,2光子显微镜和明亮场显微镜的畸变校正的理想选择,以提高图像质量。
《先进材料表征技术》课程主要讲授光子(同步辐射X射线)、电子和中子的成像、衍射和光谱的物理原理和定量分析,以及它们在半导体、能源材料、化学工程、建筑、信息技术和航空航天等工业领域的应用。从空间分辨率、能量分辨率、时间分辨率、检测灵敏度和效率等方面,比较了同步辐射X射线源、散裂中子源和像差校正电子显微镜等先进仪器设备中的各种表征技术,以展示它们在获取晶体结构、原子位置、电子结构、自旋结构、元素分布、磁性、化学键和动力学演化等信息方面的优缺点。这些知识指导学生选择合适的表征技术来研究材料的目标结构并理解其在工业应用中的结构-性能关系。
摘要 扫描透射电子显微镜 (STEM) 技术在过去二十年中取得了重大进步。像差校正技术、超高能量分辨率单色仪和最先进的探测器/相机的进步使 STEM 成为从微观到原子尺度研究材料化学和结构的重要工具。这种表征技术对于理解和表征下一代先进材料中铁性材料特性的起源非常有价值。工程材料的许多独特性质,例如铁电性、压电性和铁磁性,都与其原子级组成和结构密切相关。STEM 能够直接观察这些结构特征,从而与宏观特性建立联系。从这个角度来看,我们概述了先进的 STEM 技术在研究铁性材料特性起源中的应用,并讨论了进一步利用 STEM 技术的潜在机会。
使用光子或电子的成像的空间分辨率从根本上受到用于将信息从Sample运送到检测器的物质的波长的限制。但是,达到分辨率的衍射极限需要无像差的成像系统。在低能电子显微镜中实现原子分辨率的挑战主要来自电子光学元件的aber。尤其是色差,可严重恶化低电子能量的成像性能[1-3]。在1936年奠定了理解和补偿这些像差的基础[4,5]。Scherzer定理确定旋转对称的电子镜头不可避免地是色的和球形的。该定理强调了电子显微镜的临界局限性,为数十年的重新搜索奠定了旨在克服这些固有畸变的阶段。在1947年,可以证明电子透镜中的色差和球形像差可以通过使用时变磁场去除旋转对称性或引入空间电荷来纠正[6]。稍后,实验证明了使用己键纠正器对球形畸变的校正[7,8]。这一突破不仅证明了较早提出的理论提议,而且还实现了分辨率的取代,从而取得了显着的电子显微镜能力。超快电子显微镜提供了出色的时间和空间分辨率[9-11]。最近的研究探索了连贯的通过整合高度相干的场排放源[12-14],像差校正探针和增加的探针电流,可以预期该领域的未来进展。尽管可编程和自适应光学器件(例如空间光调节器(SLM))已彻底改变了光学元件[15],但电子光学元件的可编程和适应性相板的开发仍处于早期阶段[16-23]。
暴露 [7] 或浸入水中时。 [8] 相比之下,据报道 MoTe 2 是反应性最强的 TMD 之一。 [9] 然而,人们对导致这些材料行为截然不同的原子级过程知之甚少。像差校正(扫描)透射电子显微镜 (STEM) 可以以亚秒级分辨率获取材料的精确原子结构。然而,用于成像的高能电子也会引起结构变化,正如已经在 MoS 2 和 MoTe 2 中证明的那样。在 MoS 2 中,连续的电子暴露会通过电子激发和连锁损伤的共同作用迅速导致硫空位 [10] 的形成,[11] 它们首先聚集成空位线,然后出现富含钼边缘的孔隙。 [12] 相反,大概由于 Te 的质量大于 S,连锁损伤被抑制,MoTe 2 中的空位形成速度明显较慢,从而可以在不去除原子的情况下发生动态相变。 [13] 尽管如此,在这两种材料长时间成像的过程中,结构变化是不可避免的。 因此,为了研究与氧化相关的结构变化,必须将它们与纯电子辐照引起的效应区分开来。 这就需要具有超高真空的仪器,并在成像过程中在样品周围引入受控的低压气氛。 [14] 此类实验已经表明,石墨烯中的化学蚀刻发生在氧分压 > 3 × 10 − 8 托时,[15] 远低于带有侧入支架的 TEM 仪器的典型压力,导致孔隙从缺陷位置开始生长。 [16] 原始石墨烯区域不受影响。 然而,对所有其他 2D 材料仍然缺乏类似的研究。在这里,我们使用同样的策略来比较低压(9 × 10 − 10 − 4 × 10 − 7 托)氧气气氛下悬浮的二维 MoS 2 和 MoTe 2 单层的行为,同时通过 STEM 进行原子分辨率成像。在电子辐照下,O 2 分子可以分裂成原子氧,从而将化学效应加速到实验可及的时间尺度。在我们的实验中,MoS 2 中的结构损伤与氧分压无关,显示出众所周知的[10,12,17]与电子束相关的空位产生以及随后的富钼边缘结构孔隙。相反,在 MoTe 2 中,不同氧气压力下的结构变化有明显差异。具体而言,在超高真空中,MoTe 2 中的损伤与 MoS 2 中的损伤相似,除了