摘要 变分量子算法是一类量子启发式算法,是展示有用量子计算的有希望的候选算法。找到在硬件上放大这些方法性能的最佳方法是一项重要任务。在这里,我们使用一类称为“元学习器”的现有技术来评估量子启发式算法的优化。我们在三个模拟环境中的三个问题上,针对两种量子启发式算法(量子交替算子 ansatz 和变分量子特征求解器),比较了元学习器与进化策略、L-BFGS-B 和 Nelder-Mead 方法的性能。我们表明,在嘈杂的参数设置环境中,元学习器比我们测试的所有其他优化器更频繁地接近全局最优值。我们还发现,元学习器通常更能抵抗噪音,例如,在嘈杂和采样环境中,性能下降幅度较小,并且“增益”指标的平均表现优于其最接近的竞争对手 L-BFGS-B。最后,我们提供了证据表明,在小问题上训练的元学习器将推广到更大的问题。这些结果是一个重要的迹象,表明元学习和相关的机器学习方法将成为近期嘈杂量子计算机有用应用不可或缺的一部分。
第IX部分 - 出版物的精选出版物清单(过去10年)。注意:这是一个选定的列表,不包括过去10年以来国际期刊中的所有出版物。1。Silvetti,M*。,Lasaponara,S.,Daddaoua,N.,Horan,M。,&Gottlieb,J。(2023)。执行功能和信息需求的强化元学习框架。神经网络,157,103-113。如果(2022):9.66 2。Doricchi,F.,Lasaponara,S.,Pazzaglia,M。,&Silvetti,M。(2022)。左右颞顶点连接(TPJ)作为“匹配/不匹配”享乐机器:TPJ功能的统一帐户。生命评论物理学,42,56-92。如果(2022):9.83 3。Goris,J.,Silvetti,M.,Verguts,T.,Wiersema,J.R.,Brass,M。,&Braem,S。(2021)。自闭症特征与尽管自适应学习率一项动荡的奖励学习任务中的表现较差。自闭症,25(2),440-451。如果(2020):5.689 4。Caligiore,D.,Silvetti*,M.,D'Amelio,M.,Puglisi-Allegra,S。,&Baldassarre,G。(2020)。在平序前阶段,老年痴呆症患者症中儿茶酚胺功能障碍的计算建模。阿尔茨海默氏病杂志,(77)1,275-290。如果(2020):4.472 5。Silvetti*,M.,Vassena,E.,Abrahamse,E。,&Verguts,T。(2018)。 背扣带回脑系统作为增强元学习器。 PLOS计算生物学,14(8),E1006370。 if(2018):4.428 6。 Holroyd,C。B.,Ribas-Fernandes,J.J.,Shahnazian,D.,Silvetti,M。,&Verguts,T。(2018)。Silvetti*,M.,Vassena,E.,Abrahamse,E。,&Verguts,T。(2018)。背扣带回脑系统作为增强元学习器。PLOS计算生物学,14(8),E1006370。if(2018):4.428 6。Holroyd,C。B.,Ribas-Fernandes,J.J.,Shahnazian,D.,Silvetti,M。,&Verguts,T。(2018)。人类中型皮层编码任务进度的分布式表示。国家科学院的会议记录,115(25),6398-6403。if(2018):9.58 7。Silvetti,M.,Lasaponara,S.,Lecce,F.,Dragone,A.,Macaluso,E。,&Doricchi,F。(2016)。左侧腹侧注意系统对无效靶标的反应及其对空间疏忽综合征的影响:多变量fMRI研究。大脑皮层,26(12),4551-4562。if(2016):6.559 8。Verguts,T.,Vassena,E。和Silvetti,M。(2015)。对认知和身体任务的自适应努力投资:神经计算模型。行为神经科学中的边界,9,57。if(2015):3.392 9。E.在奖励预测,结果和选择中分离ACC和VMPFC的贡献。Neuropsychologia,59,112-123。if(2014):3.302 10。E.重叠的神经系统代表认知工作和奖励预期。PLOS ONE,9(3),E91008。 if(2014):3.234 11。 Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。 从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。 神经科学与生物行为评论,46,44-57。 if(2014):8.802 12。 Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。 Neuroimage,84,376-382。 if(2014):6.357 13。PLOS ONE,9(3),E91008。if(2014):3.234 11。Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。 从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。 神经科学与生物行为评论,46,44-57。 if(2014):8.802 12。 Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。 Neuroimage,84,376-382。 if(2014):6.357 13。Silvetti*,M.,Alexander,W.,Verguts,T。,&Brown,J。W.(2014)。从冲突管理到基于奖励的决策:灵长类动物内侧皮层中的演员和评论家。神经科学与生物行为评论,46,44-57。if(2014):8.802 12。Silvetti*,M.,Castellar,E。N.,Roger,C。,&Verguts,T。(2014)。Neuroimage,84,376-382。if(2014):6.357 13。奖励人体内侧皮层中的预期和预测错误:一项脑电图研究。Silvetti*,M.,Seurinck,R.,Van Bochove,M。,&Verguts,T。(2013)。 去甲肾上腺素系统对神经可塑性的最佳控制的影响。 行为神经科学中的边界,7,160。 if(2013):4.16 14。 Silvetti*,M.,Wiersema,J.R.,Sonuga-Barke,E。,&Verguts,T。(2013)。 内侧额叶皮质中的不足增强学习是多巴胺相关动机缺陷的模型。 神经网络,46,199-209。 if(2013):2.076 15。 Silvetti*,M.,Seurinck,R。,&Verguts,T。(2013)。 的价值和预测误差估计是ACC中波动率效应的说明:基于模型的fMRI研究。 Cortex,49(6),1627-1635。 if(2013):6.042Silvetti*,M.,Seurinck,R.,Van Bochove,M。,&Verguts,T。(2013)。去甲肾上腺素系统对神经可塑性的最佳控制的影响。行为神经科学中的边界,7,160。if(2013):4.16 14。Silvetti*,M.,Wiersema,J.R.,Sonuga-Barke,E。,&Verguts,T。(2013)。内侧额叶皮质中的不足增强学习是多巴胺相关动机缺陷的模型。神经网络,46,199-209。if(2013):2.076 15。Silvetti*,M.,Seurinck,R。,&Verguts,T。(2013)。的价值和预测误差估计是ACC中波动率效应的说明:基于模型的fMRI研究。Cortex,49(6),1627-1635。if(2013):6.042